

 Navigation

 	
 index

 	
 next |

 	Silex 0.0.0 documentation

Silex

	Introduction

	Usage

	Middlewares

	Organizing Controllers

	Services

	Providers

	Testing

	Cookbook

	Internals

	Contributing

	Silex

	Webserver Configuration

	Changelog

	Phar File

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Introduction

Silex is a PHP microframework for PHP 5.3. It is built on the shoulders of
Symfony2 and Pimple and also inspired by sinatra.

A microframework provides the guts for building simple single-file apps. Silex
aims to be:

	Concise: Silex exposes an intuitive and concise API that is fun to use.

	Extensible: Silex has an extension system based around the Pimple micro
service-container that makes it even easier to tie in third party libraries.

	Testable: Silex uses Symfony2’s HttpKernel which abstracts request and
response. This makes it very easy to test apps and the framework itself. It
also respects the HTTP specification and encourages its proper use.

In a nutshell, you define controllers and map them to routes, all in one step.

Let’s go!:

// web/index.php

require_once __DIR__.'/../vendor/autoload.php';

$app = new Silex\Application();

$app->get('/hello/{name}', function ($name) use ($app) {
 return 'Hello '.$app->escape($name);
});

$app->run();

All that is needed to get access to the Framework is to include the
autoloader.

Next we define a route to /hello/{name} that matches for GET requests.
When the route matches, the function is executed and the return value is sent
back to the client.

Finally, the app is run. Visit /hello/world to see the result. It’s really
that easy!

Installing Silex is as easy as it can get. Download [http://silex.sensiolabs.org/download] the archive file,
extract it, and you’re done!

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Usage

This chapter describes how to use Silex.

Installation

If you want to get started fast, download [http://silex.sensiolabs.org/download] Silex as an archive and extract
it, you should have the following directory structure:

├── composer.json
├── composer.lock
├── vendor
│ └── ...
└── web
 └── index.php

If you want more flexibility, use Composer instead. Create a
composer.json:

{
 "require": {
 "silex/silex": "1.0.*@dev"
 }
}

And run Composer to install Silex and all its dependencies:

$ curl -s http://getcomposer.org/installer | php
$ php composer.phar install

Tip

By default, Silex relies on the stable Symfony components. If you want to
use their master version instead, add "minimum-stability": "dev" in
your composer.json file.

Upgrading

Upgrading Silex to the latest version is as easy as running the update
command:

$ php composer.phar update

Bootstrap

To bootstrap Silex, all you need to do is require the vendor/autoload.php
file and create an instance of Silex\Application. After your controller
definitions, call the run method on your application:

// web/index.php

require_once __DIR__.'/../vendor/autoload.php';

$app = new Silex\Application();

// definitions

$app->run();

Then, you have to configure your web server (read the dedicated chapter for more information).

Tip

When developing a website, you might want to turn on the debug mode to
ease debugging:

$app['debug'] = true;

Tip

If your application is hosted behind a reverse proxy and you want Silex to
trust the X-Forwarded-For* headers, you will need to run your
application like this:

use Symfony\Component\HttpFoundation\Request;

Request::trustProxyData();
$app->run();

Routing

In Silex you define a route and the controller that is called when that
route is matched.

A route pattern consists of:

	Pattern: The route pattern defines a path that points to a resource. The
pattern can include variable parts and you are able to set RegExp
requirements for them.

	Method: One of the following HTTP methods: GET, POST, PUT
DELETE. This describes the interaction with the resource. Commonly only
GET and POST are used, but it is possible to use the others as well.

The controller is defined using a closure like this:

function () {
 // do something
}

Closures are anonymous functions that may import state from outside of their
definition. This is different from globals, because the outer state does not
have to be global. For instance, you could define a closure in a function and
import local variables of that function.

Note

Closures that do not import scope are referred to as lambdas. Because in
PHP all anonymous functions are instances of the Closure class, we
will not make a distinction here.

The return value of the closure becomes the content of the page.

Example GET route

Here is an example definition of a GET route:

$blogPosts = array(
 1 => array(
 'date' => '2011-03-29',
 'author' => 'igorw',
 'title' => 'Using Silex',
 'body' => '...',
),
);

$app->get('/blog', function () use ($blogPosts) {
 $output = '';
 foreach ($blogPosts as $post) {
 $output .= $post['title'];
 $output .= '
';
 }

 return $output;
});

Visiting /blog will return a list of blog post titles. The use
statement means something different in this context. It tells the closure to
import the $blogPosts variable from the outer scope. This allows you to use it
from within the closure.

Dynamic routing

Now, you can create another controller for viewing individual blog posts:

$app->get('/blog/show/{id}', function (Silex\Application $app, $id) use ($blogPosts) {
 if (!isset($blogPosts[$id])) {
 $app->abort(404, "Post $id does not exist.");
 }

 $post = $blogPosts[$id];

 return "<h1>{$post['title']}</h1>".
 "<p>{$post['body']}</p>";
});

This route definition has a variable {id} part which is passed to the
closure.

When the post does not exist, we are using abort() to stop the request
early. It actually throws an exception, which we will see how to handle later
on.

Example POST route

POST routes signify the creation of a resource. An example for this is a
feedback form. We will use the mail function to send an e-mail:

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$app->post('/feedback', function (Request $request) {
 $message = $request->get('message');
 mail('feedback@yoursite.com', '[YourSite] Feedback', $message);

 return new Response('Thank you for your feedback!', 201);
});

It is pretty straightforward.

Note

There is a SwiftmailerServiceProvider
included that you can use instead of mail().

The current request is automatically injected by Silex to the Closure
thanks to the type hinting. It is an instance of Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html],
so you can fetch variables using the request get method.

Instead of returning a string we are returning an instance of Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html].
This allows setting an HTTP status code, in this case it is set to 201
Created.

Note

Silex always uses a Response internally, it converts strings to
responses with status code 200 Ok.

Other methods

You can create controllers for most HTTP methods. Just call one of these
methods on your application: get, post, put, delete. You can
also call match, which will match all methods:

$app->match('/blog', function () {
 ...
});

You can then restrict the allowed methods via the method method:

$app->match('/blog', function () {
 ...
})
->method('PATCH');

You can match multiple methods with one controller using regex syntax:

$app->match('/blog', function () {
 ...
})
->method('PUT|POST');

Note

The order in which the routes are defined is significant. The first
matching route will be used, so place more generic routes at the bottom.

Route variables

As it has been shown before you can define variable parts in a route like
this:

$app->get('/blog/show/{id}', function ($id) {
 ...
});

It is also possible to have more than one variable part, just make sure the
closure arguments match the names of the variable parts:

$app->get('/blog/show/{postId}/{commentId}', function ($postId, $commentId) {
 ...
});

While it’s not suggested, you could also do this (note the switched
arguments):

$app->get('/blog/show/{postId}/{commentId}', function ($commentId, $postId) {
 ...
});

You can also ask for the current Request and Application objects:

$app->get('/blog/show/{id}', function (Application $app, Request $request, $id) {
 ...
});

Note

Note for the Application and Request objects, Silex does the injection
based on the type hinting and not on the variable name:

$app->get('/blog/show/{id}', function (Application $foo, Request $bar, $id) {
 ...
});

Route variables converters

Before injecting the route variables into the controller, you can apply some
converters:

$app->get('/user/{id}', function ($id) {
 // ...
})->convert('id', function ($id) { return (int) $id; });

This is useful when you want to convert route variables to objects as it
allows to reuse the conversion code across different controllers:

$userProvider = function ($id) {
 return new User($id);
};

$app->get('/user/{user}', function (User $user) {
 // ...
})->convert('user', $userProvider);

$app->get('/user/{user}/edit', function (User $user) {
 // ...
})->convert('user', $userProvider);

The converter callback also receives the Request as its second argument:

$callback = function ($post, Request $request) {
 return new Post($request->attributes->get('slug'));
};

$app->get('/blog/{id}/{slug}', function (Post $post) {
 // ...
})->convert('post', $callback);

Requirements

In some cases you may want to only match certain expressions. You can define
requirements using regular expressions by calling assert on the
Controller object, which is returned by the routing methods.

The following will make sure the id argument is numeric, since \d+
matches any amount of digits:

$app->get('/blog/show/{id}', function ($id) {
 ...
})
->assert('id', '\d+');

You can also chain these calls:

$app->get('/blog/show/{postId}/{commentId}', function ($postId, $commentId) {
 ...
})
->assert('postId', '\d+')
->assert('commentId', '\d+');

Default values

You can define a default value for any route variable by calling value on
the Controller object:

$app->get('/{pageName}', function ($pageName) {
 ...
})
->value('pageName', 'index');

This will allow matching /, in which case the pageName variable will
have the value index.

Named routes

Some providers (such as UrlGeneratorProvider) can make use of named
routes. By default Silex will generate a route name for you, that cannot
really be used. You can give a route a name by calling bind on the
Controller object that is returned by the routing methods:

$app->get('/', function () {
 ...
})
->bind('homepage');

$app->get('/blog/show/{id}', function ($id) {
 ...
})
->bind('blog_post');

Note

It only makes sense to name routes if you use providers that make use of
the RouteCollection.

Controllers in classes

If you don’t want to use anonymous functions, you can also define your
controllers as methods. By using the ControllerClass::methodName syntax,
you can tell Silex to lazily create that controller class for you:

$app->get('/', 'Igorw\Foo::bar');

use Silex\Application;
use Symfony\Component\HttpFoundation\Request;

namespace Igorw
{
 class Foo
 {
 public function bar(Request $request, Application $app)
 {
 ...
 }
 }
}

This will load the Igorw\Foo class on demand, create an instance and call
the bar method to get the response. You can use Request and
Silex\Application type hints to get $request and $app injected.

For an even stronger separation between Silex and your controllers, you can
define your controllers as services.

Global Configuration

If a controller setting must be applied to all controllers (a converter, a
middleware, a requirement, or a default value), you can configure it on
$app['controllers'], which holds all application controllers:

$app['controllers']
 ->value('id', '1')
 ->assert('id', '\d+')
 ->requireHttps()
 ->method('get')
 ->convert('id', function () { /* ... */ })
 ->before(function () { /* ... */ })
;

These settings are applied to already registered controllers and they become
the defaults for new controllers.

Note

The global configuration does not apply to controller providers you might
mount as they have their own global configuration (see the Modularity
paragraph below).

Error handlers

If some part of your code throws an exception you will want to display some
kind of error page to the user. This is what error handlers do. You can also
use them to do additional things, such as logging.

To register an error handler, pass a closure to the error method which
takes an Exception argument and returns a response:

use Symfony\Component\HttpFoundation\Response;

$app->error(function (\Exception $e, $code) {
 return new Response('We are sorry, but something went terribly wrong.');
});

You can also check for specific errors by using the $code argument, and
handle them differently:

use Symfony\Component\HttpFoundation\Response;

$app->error(function (\Exception $e, $code) {
 switch ($code) {
 case 404:
 $message = 'The requested page could not be found.';
 break;
 default:
 $message = 'We are sorry, but something went terribly wrong.';
 }

 return new Response($message);
});

Note

As Silex ensures that the Response status code is set to the most
appropriate one depending on the exception, setting the status on the
response won’t work. If you want to overwrite the status code (which you
should not without a good reason), set the X-Status-Code header:

return new Response('Error', 404 /* ignored */, array('X-Status-Code' => 200));

You can restrict an error handler to only handle some Exception classes by
setting a more specific type hint for the Closure argument:

$app->error(function (\LogicException $e, $code) {
 // this handler will only \LogicException exceptions
 // and exceptions that extends \LogicException
});

If you want to set up logging you can use a separate error handler for that.
Just make sure you register it before the response error handlers, because
once a response is returned, the following handlers are ignored.

Note

Silex ships with a provider for Monolog [https://github.com/Seldaek/monolog] which handles logging of errors.
Check out the Providers chapter for details.

Tip

Silex comes with a default error handler that displays a detailed error
message with the stack trace when debug is true, and a simple error
message otherwise. Error handlers registered via the error() method
always take precedence but you can keep the nice error messages when debug
is turned on like this:

use Symfony\Component\HttpFoundation\Response;

$app->error(function (\Exception $e, $code) use ($app) {
 if ($app['debug']) {
 return;
 }

 // logic to handle the error and return a Response
});

The error handlers are also called when you use abort to abort a request
early:

$app->get('/blog/show/{id}', function (Silex\Application $app, $id) use ($blogPosts) {
 if (!isset($blogPosts[$id])) {
 $app->abort(404, "Post $id does not exist.");
 }

 return new Response(...);
});

Redirects

You can redirect to another page by returning a redirect response, which you
can create by calling the redirect method:

$app->get('/', function () use ($app) {
 return $app->redirect('/hello');
});

This will redirect from / to /hello.

Forwards

When you want to delegate the rendering to another controller, without a
round-trip to the browser (as for a redirect), use an internal sub-request:

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\HttpKernelInterface;

$app->get('/', function () use ($app) {
 // redirect to /hello
 $subRequest = Request::create('/hello', 'GET');

 return $app->handle($subRequest, HttpKernelInterface::SUB_REQUEST);
});

Tip

If you are using UrlGeneratorProvider, you can also generate the URI:

$request = Request::create($app['url_generator']->generate('hello'), 'GET');

There’s some more things that you need to keep in mind though. In most cases you
will want to forward some parts of the current master request to the sub-request.
That includes: Cookies, server information, session.
Read more on how to make sub-requests.

JSON

If you want to return JSON data, you can use the json helper method.
Simply pass it your data, status code and headers, and it will create a JSON
response for you:

$app->get('/users/{id}', function ($id) use ($app) {
 $user = getUser($id);

 if (!$user) {
 $error = array('message' => 'The user was not found.');
 return $app->json($error, 404);
 }

 return $app->json($user);
});

Streaming

It’s possible to create a streaming response, which is important in cases when
you cannot buffer the data being sent:

$app->get('/images/{file}', function ($file) use ($app) {
 if (!file_exists(__DIR__.'/images/'.$file)) {
 return $app->abort(404, 'The image was not found.');
 }

 $stream = function () use ($file) {
 readfile($file);
 };

 return $app->stream($stream, 200, array('Content-Type' => 'image/png'));
});

If you need to send chunks, make sure you call ob_flush and flush
after every chunk:

$stream = function () {
 $fh = fopen('http://www.example.com/', 'rb');
 while (!feof($fh)) {
 echo fread($fh, 1024);
 ob_flush();
 flush();
 }
 fclose($fh);
};

Traits

Silex comes with PHP traits that define shortcut methods.

Caution

You need to use PHP 5.4 or later to benefit from this feature.

Almost all built-in service providers have some corresponding PHP traits. To
use them, define your own Application class and include the traits you want:

use Silex\Application;

class MyApplication extends Application
{
 use Application\TwigTrait;
 use Application\SecurityTrait;
 use Application\FormTrait;
 use Application\UrlGeneratorTrait;
 use Application\SwiftmailerTrait;
 use Application\MonologTrait;
 use Application\TranslationTrait;
}

You can also define your own Route class and use some traits:

use Silex\Route;

class MyRoute extends Route
{
 use Route\SecurityTrait;
}

To use your newly defined route, override the $app['route_class']
setting:

$app['route_class'] = 'MyRoute';

Read each provider chapter to learn more about the added methods.

Security

Make sure to protect your application against attacks.

Escaping

When outputting any user input (either route variables GET/POST variables
obtained from the request), you will have to make sure to escape it correctly,
to prevent Cross-Site-Scripting attacks.

	Escaping HTML: PHP provides the htmlspecialchars function for this.
Silex provides a shortcut escape method:

$app->get('/name', function (Silex\Application $app) {
 $name = $app['request']->get('name');
 return "You provided the name {$app->escape($name)}.";
});

If you use the Twig template engine you should use its escaping or even
auto-escaping mechanisms.

	Escaping JSON: If you want to provide data in JSON format you should
use the Silex json function:

$app->get('/name.json', function (Silex\Application $app) {
 $name = $app['request']->get('name');
 return $app->json(array('name' => $name));
});

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Middlewares

Silex allows you to run code, that changes the default Silex behavior, at
different stages during the handling of a request through middlewares:

	Application middlewares are triggered independently of the current handled
request;

	Route middlewares are triggered when their associated route is matched.

Application Middlewares

The application middlewares are only run for the “master” Request.

Before Middleware

A before application middleware allows you to tweak the Request before the
controller is executed:

$app->before(function (Request $request) {
 // ...
});

By default, the middleware is run after the routing and the security.

If you want your middleware to be run even if an exception is thrown early on
(on a 404 or 403 error for instance), then, you need to register it as an
early event:

$app->before(function (Request $request) {
 // ...
}, Application::EARLY_EVENT);

Of course, in this case, the routing and the security won’t have been
executed, and so you won’t have access to the locale, the current route, or
the security user.

Note

The before middleware is an event registered on the Symfony request
event.

After Middleware

An after application middleware allows you to tweak the Response before it
is sent to the client:

$app->after(function (Request $request, Response $response) {
 // ...
});

Note

The after middleware is an event registered on the Symfony response
event.

Finish Middleware

A finish application middleware allows you to execute tasks after the
Response has been sent to the client (like sending emails or logging):

$app->finish(function (Request $request, Response $response) {
 // ...
 // Warning: modifications to the Request or Response will be ignored
});

Note

The finish middleware is an event registered on the Symfony terminate
event.

Route Middlewares

Route middlewares are added to routes or route collections and they are only
triggered when the corresponding route is matched. You can also stack them:

$app->get('/somewhere', function () {
 // ...
})
->before($before1)
->before($before2)
->after($after1)
->after($after2)
;

Before Middleware

A before route middleware is fired just before the route callback, but after
the before application middlewares:

$before = function (Request $request) use ($app) {
 // ...
};

$app->get('/somewhere', function () {
 // ...
})
->before($before);

After Middleware

An after route middleware is fired just after the route callback, but before
the application after application middlewares:

$after = function (Request $request, Response $response) use ($app) {
 // ...
};

$app->get('/somewhere', function () {
 // ...
})
->after($after);

Middlewares Priority

You can add as many middlewares as you want, in which case they are triggered
in the same order as you added them.

You can explicitly control the priority of your middleware by passing an
additional argument to the registration methods:

$app->before(function (Request $request) {
 // ...
}, 32);

As a convenience, two constants allow you to register an event as early as
possible or as late as possible:

$app->before(function (Request $request) {
 // ...
}, Application::EARLY_EVENT);

$app->before(function (Request $request) {
 // ...
}, Application::LATE_EVENT);

Short-circuiting the Controller

If a before middleware returns a Response object, the Request handling is
short-circuited (the next middlewares won’t be run, neither the route
callback), and the Response is passed to the after middlewares right away:

$app->before(function (Request $request) {
 // redirect the user to the login screen if access to the Resource is protected
 if (...) {
 return new RedirectResponse('/login');
 }
});

Note

If a before middleware does not return a Response or null, a
RuntimeException is thrown.

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Organizing Controllers

When your application starts to define too many controllers, you might want to
group them logically:

// define controllers for a blog
$blog = $app['controllers_factory'];
$blog->get('/', function () {
 return 'Blog home page';
});
// ...

// define controllers for a forum
$forum = $app['controllers_factory'];
$forum->get('/', function () {
 return 'Forum home page';
});

// define "global" controllers
$app->get('/', function () {
 return 'Main home page';
});

$app->mount('/blog', $blog);
$app->mount('/forum', $forum);

Note

$app['controllers_factory'] is a factory that returns a new instance
of ControllerCollection when used.

mount() prefixes all routes with the given prefix and merges them into the
main Application. So, / will map to the main home page, /blog/ to the
blog home page, and /forum/ to the forum home page.

Caution

When mounting a route collection under /blog, it is not possible to
define a route for the /blog URL. The shortest possible URL is
/blog/.

Note

When calling get(), match(), or any other HTTP methods on the
Application, you are in fact calling them on a default instance of
ControllerCollection (stored in $app['controllers']).

Another benefit is the ability to apply settings on a set of controllers very
easily. Building on the example from the middleware section, here is how you
would secure all controllers for the backend collection:

$backend = $app['controllers_factory'];

// ensure that all controllers require logged-in users
$backend->before($mustBeLogged);

Tip

For a better readability, you can split each controller collection into a
separate file:

// blog.php
$blog = $app['controllers_factory'];
$blog->get('/', function () { return 'Blog home page'; });

return $blog;

// app.php
$app->mount('/blog', include 'blog.php');

Instead of requiring a file, you can also create a Controller
provider.

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Services

Silex is not only a microframework. It is also a micro service container. It
does this by extending Pimple [http://pimple.sensiolabs.org] which provides
service goodness in just 44 NCLOC.

Dependency Injection

Note

You can skip this if you already know what Dependency Injection is.

Dependency Injection is a design pattern where you pass dependencies to
services instead of creating them from within the service or relying on
globals. This generally leads to code that is decoupled, re-usable, flexible
and testable.

Here is an example of a class that takes a User object and stores it as a
file in JSON format:

class JsonUserPersister
{
 private $basePath;

 public function __construct($basePath)
 {
 $this->basePath = $basePath;
 }

 public function persist(User $user)
 {
 $data = $user->getAttributes();
 $json = json_encode($data);
 $filename = $this->basePath.'/'.$user->id.'.json';
 file_put_contents($filename, $json, LOCK_EX);
 }
}

In this simple example the dependency is the basePath property. It is
passed to the constructor. This means you can create several independent
instances with different base paths. Of course dependencies do not have to be
simple strings. More often they are in fact other services.

Container

A DIC or service container is responsible for creating and storing services.
It can recursively create dependencies of the requested services and inject
them. It does so lazily, which means a service is only created when you
actually need it.

Most containers are quite complex and are configured through XML or YAML
files.

Pimple is different.

Pimple

Pimple is probably the simplest service container out there. It makes strong
use of closures and implements the ArrayAccess interface.

We will start off by creating a new instance of Pimple – and because
Silex\Application extends Pimple all of this applies to Silex as
well:

$container = new Pimple();

or:

$app = new Silex\Application();

Parameters

You can set parameters (which are usually strings) by setting an array key on
the container:

$app['some_parameter'] = 'value';

The array key can be anything, by convention periods are used for
namespacing:

$app['asset.host'] = 'http://cdn.mysite.com/';

Reading parameter values is possible with the same syntax:

echo $app['some_parameter'];

Service definitions

Defining services is no different than defining parameters. You just set an
array key on the container to be a closure. However, when you retrieve the
service, the closure is executed. This allows for lazy service creation:

$app['some_service'] = function () {
 return new Service();
};

And to retrieve the service, use:

$service = $app['some_service'];

Every time you call $app['some_service'], a new instance of the service is
created.

Shared services

You may want to use the same instance of a service across all of your code. In
order to do that you can make a shared service:

$app['some_service'] = $app->share(function () {
 return new Service();
});

This will create the service on first invocation, and then return the existing
instance on any subsequent access.

Access container from closure

In many cases you will want to access the service container from within a
service definition closure. For example when fetching services the current
service depends on.

Because of this, the container is passed to the closure as an argument:

$app['some_service'] = function ($app) {
 return new Service($app['some_other_service'], $app['some_service.config']);
};

Here you can see an example of Dependency Injection. some_service depends
on some_other_service and takes some_service.config as configuration
options. The dependency is only created when some_service is accessed, and
it is possible to replace either of the dependencies by simply overriding
those definitions.

Note

This also works for shared services.

Protected closures

Because the container sees closures as factories for services, it will always
execute them when reading them.

In some cases you will however want to store a closure as a parameter, so that
you can fetch it and execute it yourself – with your own arguments.

This is why Pimple allows you to protect your closures from being executed, by
using the protect method:

$app['closure_parameter'] = $app->protect(function ($a, $b) {
 return $a + $b;
});

// will not execute the closure
$add = $app['closure_parameter'];

// calling it now
echo $add(2, 3);

Note that protected closures do not get access to the container.

Core services

Silex defines a range of services which can be used or replaced. You probably
don’t want to mess with most of them.

	request: Contains the current request object, which is an instance of
Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html].
It gives you access to GET, POST parameters and lots more!

Example usage:

$id = $app['request']->get('id');

This is only available when a request is being served, you can only access
it from within a controller, an application before/after middlewares, or an
error handler.

	routes: The RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html]
that is used internally. You can add, modify, read routes.

	controllers: The Silex\ControllerCollection that is used internally.
Check the Internals chapter for more information.

	dispatcher: The EventDispatcher [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventDispatcher.html]
that is used internally. It is the core of the Symfony2 system and is used
quite a bit by Silex.

	resolver: The ControllerResolver [http://api.symfony.com/master/Symfony/Component/HttpKernel/Controller/ControllerResolver.html]
that is used internally. It takes care of executing the controller with the
right arguments.

	kernel: The HttpKernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html]
that is used internally. The HttpKernel is the heart of Symfony2, it takes a
Request as input and returns a Response as output.

	request_context: The request context is a simplified representation of
the request that is used by the Router and the UrlGenerator.

	exception_handler: The Exception handler is the default handler that is
used when you don’t register one via the error() method or if your handler
does not return a Response. Disable it with
$app['exception_handler']->disable().

	logger: A
LoggerInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/Log/LoggerInterface.html]
instance. By default, logging is disabled as the value is set to null.
When the Symfony2 Monolog bridge is installed, Monolog is automatically used
as the default logger.

Note

All of these Silex core services are shared.

Core parameters

	request.http_port (optional): Allows you to override the default port
for non-HTTPS URLs. If the current request is HTTP, it will always use the
current port.

Defaults to 80.

This parameter can be used by the UrlGeneratorProvider.

	request.https_port (optional): Allows you to override the default port
for HTTPS URLs. If the current request is HTTPS, it will always use the
current port.

Defaults to 443.

This parameter can be used by the UrlGeneratorProvider.

	locale (optional): The locale of the user. When set before any request
handling, it defines the default locale (en by default). When a request
is being handled, it is automatically set according to the _locale
request attribute of the current route.

	debug (optional): Returns whether or not the application is running in
debug mode.

Defaults to false.

	charset (optional): The charset to use for Responses.

Defaults to UTF-8.

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Providers

Providers allow the developer to reuse parts of an application into another
one. Silex provides two types of providers defined by two interfaces:
ServiceProviderInterface for services and ControllerProviderInterface
for controllers.

Service Providers

Loading providers

In order to load and use a service provider, you must register it on the
application:

$app = new Silex\Application();

$app->register(new Acme\DatabaseServiceProvider());

You can also provide some parameters as a second argument. These will be set
after the provider is registered, but before it is booted:

$app->register(new Acme\DatabaseServiceProvider(), array(
 'database.dsn' => 'mysql:host=localhost;dbname=myapp',
 'database.user' => 'root',
 'database.password' => 'secret_root_password',
));

Conventions

You need to watch out in what order you do certain things when interacting
with providers. Just keep to these rules:

	Overriding existing services must occur after the provider is
registered.

Reason: If the services already exist, the provider will overwrite it.

	You can set parameters any time before the service is accessed.

Make sure to stick to this behavior when creating your own providers.

Included providers

There are a few provider that you get out of the box. All of these are within
the Silex\Provider namespace:

	DoctrineServiceProvider

	MonologServiceProvider

	SessionServiceProvider

	SerializerServiceProvider

	SwiftmailerServiceProvider

	TwigServiceProvider

	TranslationServiceProvider

	UrlGeneratorServiceProvider

	ValidatorServiceProvider

	HttpCacheServiceProvider

	FormServiceProvider

	SecurityServiceProvider

	ServiceControllerServiceProvider

Third party providers

Some service providers are developed by the community. Those third-party
providers are listed on Silex’ repository wiki [https://github.com/fabpot/Silex/wiki/Third-Party-ServiceProviders].

You are encouraged to share yours.

Creating a provider

Providers must implement the Silex\ServiceProviderInterface:

interface ServiceProviderInterface
{
 function register(Application $app);

 function boot(Application $app);
}

This is very straight forward, just create a new class that implements the two
methods. In the register() method, you can define services on the
application which then may make use of other services and parameters. In the
boot() method, you can configure the application, just before it handles a
request.

Here is an example of such a provider:

namespace Acme;

use Silex\Application;
use Silex\ServiceProviderInterface;

class HelloServiceProvider implements ServiceProviderInterface
{
 public function register(Application $app)
 {
 $app['hello'] = $app->protect(function ($name) use ($app) {
 $default = $app['hello.default_name'] ? $app['hello.default_name'] : '';
 $name = $name ?: $default;

 return 'Hello '.$app->escape($name);
 });
 }

 public function boot(Application $app)
 {
 }
}

This class provides a hello service which is a protected closure. It takes
a name argument and will return hello.default_name if no name is
given. If the default is also missing, it will use an empty string.

You can now use this provider as follows:

$app = new Silex\Application();

$app->register(new Acme\HelloServiceProvider(), array(
 'hello.default_name' => 'Igor',
));

$app->get('/hello', function () use ($app) {
 $name = $app['request']->get('name');

 return $app['hello']($name);
});

In this example we are getting the name parameter from the query string,
so the request path would have to be /hello?name=Fabien.

Controllers providers

Loading providers

In order to load and use a controller provider, you must “mount” its
controllers under a path:

$app = new Silex\Application();

$app->mount('/blog', new Acme\BlogControllerProvider());

All controllers defined by the provider will now be available under the
/blog path.

Creating a provider

Providers must implement the Silex\ControllerProviderInterface:

interface ControllerProviderInterface
{
 function connect(Application $app);
}

Here is an example of such a provider:

namespace Acme;

use Silex\Application;
use Silex\ControllerProviderInterface;

class HelloControllerProvider implements ControllerProviderInterface
{
 public function connect(Application $app)
 {
 // creates a new controller based on the default route
 $controllers = $app['controllers_factory'];

 $controllers->get('/', function (Application $app) {
 return $app->redirect('/hello');
 });

 return $controllers;
 }
}

The connect method must return an instance of ControllerCollection.
ControllerCollection is the class where all controller related methods are
defined (like get, post, match, ...).

Tip

The Application class acts in fact as a proxy for these methods.

You can now use this provider as follows:

$app = new Silex\Application();

$app->mount('/blog', new Acme\HelloControllerProvider());

In this example, the /blog/ path now references the controller defined in
the provider.

Tip

You can also define a provider that implements both the service and the
controller provider interface and package in the same class the services
needed to make your controllers work.

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Testing

Because Silex is built on top of Symfony2, it is very easy to write functional
tests for your application. Functional tests are automated software tests that
ensure that your code is working correctly. They go through the user
interface, using a fake browser, and mimic the actions a user would do.

Why

If you are not familiar with software tests, you may be wondering why you
would need this. Every time you make a change to your application, you have to
test it. This means going through all the pages and making sure they are still
working. Functional tests save you a lot of time, because they enable you to
test your application in usually under a second by running a single command.

For more information on functional testing, unit testing, and automated
software tests in general, check out PHPUnit [https://github.com/sebastianbergmann/phpunit] and Bulat Shakirzyanov’s
talk on Clean Code [http://www.slideshare.net/avalanche123/clean-code-5609451].

PHPUnit

PHPUnit [https://github.com/sebastianbergmann/phpunit] is the de-facto
standard testing framework for PHP. It was built for writing unit tests, but
it can be used for functional tests too. You write tests by creating a new
class, that extends the PHPUnit_Framework_TestCase. Your test cases are
methods prefixed with test:

class ContactFormTest extends PHPUnit_Framework_TestCase
{
 public function testInitialPage()
 {
 ...
 }
}

In your test cases, you do assertions on the state of what you are testing. In
this case we are testing a contact form, so we would want to assert that the
page loaded correctly and contains our form:

public function testInitialPage()
{
 $statusCode = ...
 $pageContent = ...

 $this->assertEquals(200, $statusCode);
 $this->assertContains('Contact us', $pageContent);
 $this->assertContains('<form', $pageContent);
}

Here you see some of the available assertions. There is a full list available
in the Writing Tests for PHPUnit [http://www.phpunit.de/manual/current/en/writing-tests-for-phpunit.html]
section of the PHPUnit documentation.

WebTestCase

Symfony2 provides a WebTestCase class that can be used to write functional
tests. The Silex version of this class is Silex\WebTestCase, and you can
use it by making your test extend it:

use Silex\WebTestCase;

class ContactFormTest extends WebTestCase
{
 ...
}

Note

To make your application testable, you need to make sure you follow “Reusing
applications” instructions from Usage.

For your WebTestCase, you will have to implement a createApplication
method, which returns your application. It will probably look like this:

public function createApplication()
{
 return require __DIR__.'/path/to/app.php';
}

Make sure you do not use require_once here, as this method will be
executed before every test.

Tip

By default, the application behaves in the same way as when using it from
a browser. But when an error occurs, it is sometimes easier to get raw
exceptions instead of HTML pages. It is rather simple if you tweak the
application configuration in the createApplication() method like
follows:

public function createApplication()
{
 $app = require __DIR__.'/path/to/app.php';
 $app['debug'] = true;
 $app['exception_handler']->disable();

 return $app;
}

Tip

If your application use sessions, set session.test to true to
simulate sessions:

public function createApplication()
{
 // ...

 $this->app['session.test'] = true;

 // ...
}

The WebTestCase provides a createClient method. A client acts as a
browser, and allows you to interact with your application. Here’s how it
works:

public function testInitialPage()
{
 $client = $this->createClient();
 $crawler = $client->request('GET', '/');

 $this->assertTrue($client->getResponse()->isOk());
 $this->assertCount(1, $crawler->filter('h1:contains("Contact us")'));
 $this->assertCount(1, $crawler->filter('form'));
 ...
}

There are several things going on here. You have both a Client and a
Crawler.

You can also access the application through $this->app.

Client

The client represents a browser. It holds your browsing history, cookies and
more. The request method allows you to make a request to a page on your
application.

Note

You can find some documentation for it in the client section of the
testing chapter of the Symfony2 documentation [http://symfony.com/doc/current/book/testing.html#the-test-client].

Crawler

The crawler allows you to inspect the content of a page. You can filter it
using CSS expressions and lots more.

Note

You can find some documentation for it in the crawler section of the testing
chapter of the Symfony2 documentation [http://symfony.com/doc/current/book/testing.html#the-test-client].

Configuration

The suggested way to configure PHPUnit is to create a phpunit.xml.dist
file, a tests folder and your tests in
tests/YourApp/Tests/YourTest.php. The phpunit.xml.dist file should
look like this:

<?xml version="1.0" encoding="UTF-8"?>
<phpunit backupGlobals="false"
 backupStaticAttributes="false"
 colors="true"
 convertErrorsToExceptions="true"
 convertNoticesToExceptions="true"
 convertWarningsToExceptions="true"
 processIsolation="false"
 stopOnFailure="false"
 syntaxCheck="false"
>
 <testsuites>
 <testsuite name="YourApp Test Suite">
 <directory>./tests/</directory>
 </testsuite>
 </testsuites>
</phpunit>

You can also configure a bootstrap file for autoloading and whitelisting for
code coverage reports.

Your tests/YourApp/Tests/YourTest.php should look like this:

namespace YourApp\Tests;

use Silex\WebTestCase;

class YourTest extends WebTestCase
{
 public function createApplication()
 {
 return require __DIR__.'/../../../app.php';
 }

 public function testFooBar()
 {
 ...
 }
}

Now, when running phpunit on the command line, your tests should run.

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Cookbook

The cookbook section contains recipes for solving specific problems.

Recipes

	Accepting a JSON request body A common need when
building a restful API is the ability to accept a JSON encoded entity from
the request body.

	Translating Validation Messages.

	How to use PdoSessionStorage to store sessions in the database.

	How to disable the CSRF Protection on a form using the FormExtension.

	How to use YAML to configure validation.

	How to make sub-requests.

	How to convert errors to exceptions.

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Internals

This chapter will tell you a bit about how Silex works
internally.

Silex

Application

The application is the main interface to Silex. It implements Symfony2’s
HttpKernelInterface [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernelInterface.html],
so you can pass a Request [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Request.html]
to the handle method and it will return a Response [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Response.html].

It extends the Pimple service container, allowing for flexibility on the
outside as well as the inside. You could replace any service, and you are also
able to read them.

The application makes strong use of the EventDispatcher [http://api.symfony.com/master/Symfony/Component/EventDispatcher/EventDispatcher.html]
to hook into the Symfony2 HttpKernel [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpKernel.html]
events. This allows fetching the Request, converting string responses into
Response objects and handling Exceptions. We also use it to dispatch some
custom events like before/after middlewares and errors.

Controller

The Symfony2 Route [http://api.symfony.com/master/Symfony/Component/Routing/Route.html] is
actually quite powerful. Routes can be named, which allows for URL generation.
They can also have requirements for the variable parts. In order to allow
settings these through a nice interface the match method (which is used by
get, post, etc.) returns an instance of the Controller, which
wraps a route.

ControllerCollection

One of the goals of exposing the RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html]
was to make it mutable, so providers could add stuff to it. The challenge here
is the fact that routes know nothing about their name. The name only has
meaning in context of the RouteCollection and cannot be changed.

To solve this challenge we came up with a staging area for routes. The
ControllerCollection holds the controllers until flush is called, at
which point the routes are added to the RouteCollection. Also, the
controllers are then frozen. This means that they can no longer be modified
and will throw an Exception if you try to do so.

Unfortunately no good way for flushing implicitly could be found, which is why
flushing is now always explicit. The Application will flush, but if you want
to read the ControllerCollection before the request takes place, you will
have to call flush yourself.

The Application provides a shortcut flush method for flushing the
ControllerCollection.

Tip

Instead of creating an instance of RouteCollection yourself, use the
$app['controllers_factory'] factory instead.

Symfony2

Following Symfony2 components are used by Silex:

	HttpFoundation: For Request and Response.

	HttpKernel: Because we need a heart.

	Routing: For matching defined routes.

	EventDispatcher: For hooking into the HttpKernel.

For more information, check out the Symfony website [http://symfony.com/].

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Contributing

We are open to contributions to the Silex code. If you find
a bug or want to contribute a provider, just follow these
steps.

	Fork the Silex repository [https://github.com/fabpot/Silex]
on github.

	Make your feature addition or bug fix.

	Add tests for it. This is important so we don’t break it in a future version unintentionally.

	Send a pull request. Bonus points for topic branches.

If you have a big change or would like to discuss something,
please join us on the mailing list [http://groups.google.com/group/silex-php].

Note

Any code you contribute must be licensed under the MIT
License.

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Silex

	DoctrineServiceProvider

	MonologServiceProvider

	SessionServiceProvider

	SwiftmailerServiceProvider

	TranslationServiceProvider

	TwigServiceProvider

	UrlGeneratorServiceProvider

	ValidatorServiceProvider

	FormServiceProvider

	HttpCacheServiceProvider

	SecurityServiceProvider

	SerializerServiceProvider

	ServiceControllerServiceProvider

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

DoctrineServiceProvider

The DoctrineServiceProvider provides integration with the Doctrine DBAL [http://www.doctrine-project.org/projects/dbal] for easy database access.

Note

There is only a Doctrine DBAL. An ORM service is not supplied.

Parameters

	db.options: Array of Doctrine DBAL options.

These options are available:

	driver: The database driver to use, defaults to pdo_mysql.
Can be any of: pdo_mysql, pdo_sqlite, pdo_pgsql,
pdo_oci, oci8, ibm_db2, pdo_ibm, pdo_sqlsrv.

	dbname: The name of the database to connect to.

	host: The host of the database to connect to. Defaults to
localhost.

	user: The user of the database to connect to. Defaults to
root.

	password: The password of the database to connect to.

	charset: Only relevant for pdo_mysql, pdo_oci and oci8,
specifies the charset used when connecting to the database.

	path: Only relevant for pdo_sqlite, specifies the path to
the SQLite database.

These and additional options are described in detail in the Doctrine DBAL
configuration documentation [http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/reference/configuration.html].

Services

	db: The database connection, instance of
Doctrine\DBAL\Connection.

	db.config: Configuration object for Doctrine. Defaults to
an empty Doctrine\DBAL\Configuration.

	db.event_manager: Event Manager for Doctrine.

Registering

$app->register(new Silex\Provider\DoctrineServiceProvider(), array(
 'db.options' => array(
 'driver' => 'pdo_sqlite',
 'path' => __DIR__.'/app.db',
),
));

Note

Doctrine DBAL comes with the “fat” Silex archive but not with the regular
one. If you are using Composer, add it as a dependency to your
composer.json file:

"require": {
 "doctrine/dbal": "2.2.*",
 }

Usage

The Doctrine provider provides a db service. Here is a usage
example:

$app->get('/blog/show/{id}', function ($id) use ($app) {
 $sql = "SELECT * FROM posts WHERE id = ?";
 $post = $app['db']->fetchAssoc($sql, array((int) $id));

 return "<h1>{$post['title']}</h1>".
 "<p>{$post['body']}</p>";
});

Using multiple databases

The Doctrine provider can allow access to multiple databases. In order to
configure the data sources, replace the db.options with dbs.options.
dbs.options is an array of configurations where keys are connection names
and values are options:

$app->register(new Silex\Provider\DoctrineServiceProvider(), array(
 'dbs.options' => array (
 'mysql_read' => array(
 'driver' => 'pdo_mysql',
 'host' => 'mysql_read.someplace.tld',
 'dbname' => 'my_database',
 'user' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
),
 'mysql_write' => array(
 'driver' => 'pdo_mysql',
 'host' => 'mysql_write.someplace.tld',
 'dbname' => 'my_database',
 'user' => 'my_username',
 'password' => 'my_password',
 'charset' => 'utf8',
),
),
));

The first registered connection is the default and can simply be accessed as
you would if there was only one connection. Given the above configuration,
these two lines are equivalent:

$app['db']->fetchAssoc('SELECT * FROM table');

$app['dbs']['mysql_read']->fetchAssoc('SELECT * FROM table');

Using multiple connections:

$app->get('/blog/show/{id}', function ($id) use ($app) {
 $sql = "SELECT * FROM posts WHERE id = ?";
 $post = $app['dbs']['mysql_read']->fetchAssoc($sql, array((int) $id));

 $sql = "UPDATE posts SET value = ? WHERE id = ?";
 $app['dbs']['mysql_write']->executeUpdate($sql, array('newValue', (int) $id));

 return "<h1>{$post['title']}</h1>".
 "<p>{$post['body']}</p>";
});

For more information, consult the Doctrine DBAL documentation [http://docs.doctrine-project.org/projects/doctrine-dbal/en/latest/].

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

MonologServiceProvider

The MonologServiceProvider provides a default logging mechanism through
Jordi Boggiano’s Monolog [https://github.com/Seldaek/monolog] library.

It will log requests and errors and allow you to add logging to your
application. This allows you to debug and monitor the behaviour,
even in production.

Parameters

	monolog.logfile: File where logs are written to.

	monolog.level (optional): Level of logging defaults
to DEBUG. Must be one of Logger::DEBUG, Logger::INFO,
Logger::WARNING, Logger::ERROR. DEBUG will log
everything, INFO will log everything except DEBUG,
etc.

	monolog.name (optional): Name of the monolog channel,
defaults to myapp.

Services

	monolog: The monolog logger instance.

Example usage:

$app['monolog']->addDebug('Testing the Monolog logging.');

Registering

$app->register(new Silex\Provider\MonologServiceProvider(), array(
 'monolog.logfile' => __DIR__.'/development.log',
));

Note

Monolog comes with the “fat” Silex archive but not with the regular one.
If you are using Composer, add it as a dependency to your
composer.json file:

"require": {
 "monolog/monolog": ">=1.0.0",
}

Usage

The MonologServiceProvider provides a monolog service. You can use it to
add log entries for any logging level through addDebug(), addInfo(),
addWarning() and addError():

use Symfony\Component\HttpFoundation\Response;

$app->post('/user', function () use ($app) {
 // ...

 $app['monolog']->addInfo(sprintf("User '%s' registered.", $username));

 return new Response('', 201);
});

Customization

You can configure Monolog (like adding or changing the handlers) before using
it by extending the monolog service:

$app['monolog'] = $app->share($app->extend('monolog', function($monolog, $app) {
 $monolog->pushHandler(...);

 return $monolog;
}));

Traits

Silex\Application\MonologTrait adds the following shortcuts:

	log: Logs a message.

$app->log(sprintf("User '%s' registered.", $username));

For more information, check out the Monolog documentation [https://github.com/Seldaek/monolog].

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

SessionServiceProvider

The SessionServiceProvider provides a service for storing data persistently
between requests.

Parameters

	session.storage.save_path (optional): The path for the
NativeFileSessionHandler, defaults to the value of
sys_get_temp_dir().

	session.storage.options: An array of options that is passed to the
constructor of the session.storage service.

In case of the default NativeSessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html],
the possible options are:

	name: The cookie name (_SESS by default)

	id: The session id (null by default)

	cookie_lifetime: Cookie lifetime

	path: Cookie path

	domain: Cookie domain

	secure: Cookie secure (HTTPS)

	httponly: Whether the cookie is http only

However, all of these are optional. Sessions last as long as the browser is
open. To override this, set the lifetime option.

	session.test: Whether to simulate sessions or not (useful when writing
functional tests).

Services

	session: An instance of Symfony2’s Session [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Session.html].

	session.storage: A service that is used for persistence of the session
data.

	session.storage.handler: A service that is used by the
session.storage for data access. Defaults to a NativeFileSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/NativeFileSessionHandler.html]
storage handler.

Registering

$app->register(new Silex\Provider\SessionServiceProvider());

Usage

The Session provider provides a session service. Here is an example that
authenticates a user and creates a session for him:

use Symfony\Component\HttpFoundation\Response;

$app->get('/login', function () use ($app) {
 $username = $app['request']->server->get('PHP_AUTH_USER', false);
 $password = $app['request']->server->get('PHP_AUTH_PW');

 if ('igor' === $username && 'password' === $password) {
 $app['session']->set('user', array('username' => $username));
 return $app->redirect('/account');
 }

 $response = new Response();
 $response->headers->set('WWW-Authenticate', sprintf('Basic realm="%s"', 'site_login'));
 $response->setStatusCode(401, 'Please sign in.');
 return $response;
});

$app->get('/account', function () use ($app) {
 if (null === $user = $app['session']->get('user')) {
 return $app->redirect('/login');
 }

 return "Welcome {$user['username']}!";
});

Custom Session Configurations

If your system is using a custom session configuration (such as a redis handler
from a PHP extension) then you need to disable the NativeFileSessionHandler by
setting session.storage.handler to null. You will have to configure the
session.save_path ini setting yourself in that case.

$app['session.storage.handler'] = null;

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

SwiftmailerServiceProvider

The SwiftmailerServiceProvider provides a service for sending email through
the Swift Mailer [http://swiftmailer.org] library.

You can use the mailer service to send messages easily. By default, it
will attempt to send emails through SMTP.

Parameters

	swiftmailer.options: An array of options for the default SMTP-based
configuration.

The following options can be set:

	host: SMTP hostname, defaults to ‘localhost’.

	port: SMTP port, defaults to 25.

	username: SMTP username, defaults to an empty string.

	password: SMTP password, defaults to an empty string.

	encryption: SMTP encryption, defaults to null.

	auth_mode: SMTP authentication mode, defaults to null.

Example usage:

$app['swiftmailer.options'] = array(
 'host' => 'host',
 'port' => '25',
 'username' => 'username',
 'password' => 'password',
 'encryption' => null,
 'auth_mode' => null
);

Services

	mailer: The mailer instance.

Example usage:

$message = \Swift_Message::newInstance();

// ...

$app['mailer']->send($message);

	swiftmailer.transport: The transport used for e-mail
delivery. Defaults to a Swift_Transport_EsmtpTransport.

	swiftmailer.transport.buffer: StreamBuffer used by
the transport.

	swiftmailer.transport.authhandler: Authentication
handler used by the transport. Will try the following
by default: CRAM-MD5, login, plaintext.

	swiftmailer.transport.eventdispatcher: Internal event
dispatcher used by Swiftmailer.

Registering

$app->register(new Silex\Provider\SwiftmailerServiceProvider());

Note

SwiftMailer comes with the “fat” Silex archive but not with the regular
one. If you are using Composer, add it as a dependency to your
composer.json file:

"require": {
 "swiftmailer/swiftmailer": ">=4.1.2,<4.2-dev"
}

Usage

The Swiftmailer provider provides a mailer service:

$app->post('/feedback', function () use ($app) {
 $request = $app['request'];

 $message = \Swift_Message::newInstance()
 ->setSubject('[YourSite] Feedback')
 ->setFrom(array('noreply@yoursite.com'))
 ->setTo(array('feedback@yoursite.com'))
 ->setBody($request->get('message'));

 $app['mailer']->send($message);

 return new Response('Thank you for your feedback!', 201);
});

Traits

Silex\Application\SwiftmailerTrait adds the following shortcuts:

	mail: Sends an email.

$app->mail(\Swift_Message::newInstance()
 ->setSubject('[YourSite] Feedback')
 ->setFrom(array('noreply@yoursite.com'))
 ->setTo(array('feedback@yoursite.com'))
 ->setBody($request->get('message')));

For more information, check out the Swift Mailer documentation [http://swiftmailer.org].

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

TranslationServiceProvider

The TranslationServiceProvider provides a service for translating your
application into different languages.

Parameters

	translator.domains (optional): A mapping of domains/locales/messages.
This parameter contains the translation data for all languages and domains.

	locale (optional): The locale for the translator. You will most likely
want to set this based on some request parameter. Defaults to en.

	locale_fallback (optional): Fallback locale for the translator. It will
be used when the current locale has no messages set. Defaults to en.

Services

	translator: An instance of Translator [http://api.symfony.com/master/Symfony/Component/Translation/Translator.html],
that is used for translation.

	translator.loader: An instance of an implementation of the translation
LoaderInterface [http://api.symfony.com/master/Symfony/Component/Translation/Loader/LoaderInterface.html],
defaults to an ArrayLoader [http://api.symfony.com/master/Symfony/Component/Translation/Loader/ArrayLoader.html].

	translator.message_selector: An instance of MessageSelector [http://api.symfony.com/master/Symfony/Component/Translation/MessageSelector.html].

Registering

$app->register(new Silex\Provider\TranslationServiceProvider(), array(
 'locale_fallback' => 'en',
));

Note

The Symfony Translation Component comes with the “fat” Silex archive but
not with the regular one. If you are using Composer, add it as a
dependency to your composer.json file:

"require": {
 "symfony/translation": "2.1.*"
}

Usage

The Translation provider provides a translator service and makes use of
the translator.domains parameter:

$app['translator.domains'] = array(
 'messages' => array(
 'en' => array(
 'hello' => 'Hello %name%',
 'goodbye' => 'Goodbye %name%',
),
 'de' => array(
 'hello' => 'Hallo %name%',
 'goodbye' => 'Tschüss %name%',
),
 'fr' => array(
 'hello' => 'Bonjour %name%',
 'goodbye' => 'Au revoir %name%',
),
),
 'validators' => array(
 'fr' => array(
 'This value should be a valid number.' => 'Cette valeur doit être un nombre.',
),
),
);

$app->get('/{_locale}/{message}/{name}', function ($message, $name) use ($app) {
 return $app['translator']->trans($message, array('%name%' => $name));
});

The above example will result in following routes:

	/en/hello/igor will return Hello igor.

	/de/hello/igor will return Hallo igor.

	/fr/hello/igor will return Bonjour igor.

	/it/hello/igor will return Hello igor (because of the fallback).

Traits

Silex\Application\TranslationTrait adds the following shortcuts:

	trans: Translates the given message.

	transChoice: Translates the given choice message by choosing a
translation according to a number.

$app->trans('Hello World');

$app->transChoice('Hello World');

Recipes

YAML-based language files

Having your translations in PHP files can be inconvenient. This recipe will
show you how to load translations from external YAML files.

First, add the Symfony2 Config and Yaml components in your composer
file:

"require": {
 "symfony/config": "2.1.*",
 "symfony/yaml": "2.1.*"
}

Next, you have to create the language mappings in YAML files. A naming you can
use is locales/en.yml. Just do the mapping in this file as follows:

hello: Hello %name%
goodbye: Goodbye %name%

Then, register the YamlFileLoader on the translator and add all your
translation files:

use Symfony\Component\Translation\Loader\YamlFileLoader;

$app['translator'] = $app->share($app->extend('translator', function($translator, $app) {
 $translator->addLoader('yaml', new YamlFileLoader());

 $translator->addResource('yaml', __DIR__.'/locales/en.yml', 'en');
 $translator->addResource('yaml', __DIR__.'/locales/de.yml', 'de');
 $translator->addResource('yaml', __DIR__.'/locales/fr.yml', 'fr');

 return $translator;
}));

XLIFF-based language files

Just as you would do with YAML translation files, you first need to add the
Symfony2 Config component as a dependency (see above for details).

Then, similarly, create XLIFF files in your locales directory and add them to
the translator:

$translator->addResource('xliff', __DIR__.'/locales/en.xlf', 'en');
$translator->addResource('xliff', __DIR__.'/locales/de.xlf', 'de');
$translator->addResource('xliff', __DIR__.'/locales/fr.xlf', 'fr');

Note

The XLIFF loader is already pre-configured by the extension.

Accessing translations in Twig templates

Once loaded, the translation service provider is available from within Twig
templates:

{{ app.translator.trans('translation_key') }}

Moreover, when using the Twig bridge provided by Symfony (see
TwigServiceProvider), you will be allowed to translate
strings in the Twig way:

{{ 'translation_key'|trans }}
{{ 'translation_key'|transchoice }}
{% trans %}translation_key{% endtrans %}

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

TwigServiceProvider

The TwigServiceProvider provides integration with the Twig [http://twig.sensiolabs.org/] template engine.

Parameters

	twig.path (optional): Path to the directory containing twig template
files (it can also be an array of paths).

	twig.templates (optional): An associative array of template names to
template contents. Use this if you want to define your templates inline.

	twig.options (optional): An associative array of twig
options. Check out the twig documentation for more information.

	twig.form.templates (optional): An array of templates used to render
forms (only available when the FormServiceProvider is enabled).

Services

	twig: The Twig_Environment instance. The main way of
interacting with Twig.

	twig.loader: The loader for Twig templates which uses the twig.path
and the twig.templates options. You can also replace the loader
completely.

Registering

$app->register(new Silex\Provider\TwigServiceProvider(), array(
 'twig.path' => __DIR__.'/views',
));

Note

Twig comes with the “fat” Silex archive but not with the regular one. If
you are using Composer, add it as a dependency to your composer.json
file:

"require": {
 "twig/twig": ">=1.8,<2.0-dev"
}

Symfony2 Components Integration

Symfony provides a Twig bridge that provides additional integration between
some Symfony2 components and Twig. Add it as a dependency to your
composer.json file:

"require": {
 "symfony/twig-bridge": "2.1.*",
}

When present, the TwigServiceProvider will provide you with the following
additional capabilities:

	UrlGeneratorServiceProvider: If you are using the
UrlGeneratorServiceProvider, you will have access to the path() and
url() functions. You can find more information in the Symfony2 Routing
documentation [http://symfony.com/doc/current/book/routing.html#generating-urls-from-a-template].

	TranslationServiceProvider: If you are using the
TranslationServiceProvider, you will get the trans() and
transchoice() functions for translation in Twig templates. You can find
more information in the Symfony2 Translation documentation [http://symfony.com/doc/current/book/translation.html#twig-templates].

	FormServiceProvider: If you are using the FormServiceProvider, you
will get a set of helpers for working with forms in templates. You can find
more information in the Symfony2 Forms reference [http://symfony.com/doc/current/reference/forms/twig_reference.html].

	SecurityServiceProvider: If you are using the
SecurityServiceProvider, you will have access to the is_granted()
function in templates. You can find more information in the Symfony2
Security documentation [http://symfony.com/doc/current/book/security.html#access-control-in-templates].

Usage

The Twig provider provides a twig service:

$app->get('/hello/{name}', function ($name) use ($app) {
 return $app['twig']->render('hello.twig', array(
 'name' => $name,
));
});

This will render a file named views/hello.twig.

In any Twig template, the app variable refers to the Application object.
So you can access any service from within your view. For example to access
$app['request']->getHost(), just put this in your template:

{{ app.request.host }}

A render function is also registered to help you render another controller
from a template:

{{ render(app.request.baseUrl ~ '/sidebar') }}

{# or if you are also using UrlGeneratorServiceProvider with the SymfonyBridgesServiceProvider #}
{{ render(url('sidebar')) }}

Note

You must prepend the app.request.baseUrl to render calls to ensure
that the render works when deployed into a sub-directory of the docroot.

Traits

Silex\Application\TwigTrait adds the following shortcuts:

	render: Renders a view with the given parameters and returns a Response
object.

return $app->render('index.html', ['name' => 'Fabien']);

$response = new Response();
$response->setTtl(10);

return $app->render('index.html', ['name' => 'Fabien'], $response);

// stream a view
use Symfony\Component\HttpFoundation\StreamedResponse;

return $app->render('index.html', ['name' => 'Fabien'], new StreamedResponse());

Customization

You can configure the Twig environment before using it by extending the
twig service:

$app['twig'] = $app->share($app->extend('twig', function($twig, $app) {
 $twig->addGlobal('pi', 3.14);
 $twig->addFilter('levenshtein', new \Twig_Filter_Function('levenshtein'));

 return $twig;
}));

For more information, check out the Twig documentation [http://twig.sensiolabs.org].

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

UrlGeneratorServiceProvider

The UrlGeneratorServiceProvider provides a service for generating URLs for
named routes.

Parameters

None.

Services

	url_generator: An instance of UrlGenerator [http://api.symfony.com/master/Symfony/Component/Routing/Generator/UrlGenerator.html],
using the RouteCollection [http://api.symfony.com/master/Symfony/Component/Routing/RouteCollection.html]
that is provided through the routes service. It has a generate
method, which takes the route name as an argument, followed by an array of
route parameters.

Registering

$app->register(new Silex\Provider\UrlGeneratorServiceProvider());

Usage

The UrlGenerator provider provides a url_generator service:

$app->get('/', function () {
 return 'welcome to the homepage';
})
->bind('homepage');

$app->get('/hello/{name}', function ($name) {
 return "Hello $name!";
})
->bind('hello');

$app->get('/navigation', function () use ($app) {
 return 'generate('homepage').'">Home'.
 ' | '.
 'generate('hello', array('name' => 'Igor')).'">Hello Igor';
});

When using Twig, the service can be used like this:

{{ app.url_generator.generate('homepage') }}

Moreover, if you use Twig, you will have access to the path() and
url() functions:

{{ path('homepage') }}
{{ url('homepage') }} {# generates the absolute url http://example.org/ #}
{{ path('hello', {name: 'Fabien'}) }}
{{ url('hello', {name: 'Fabien'}) }} {# generates the absolute url http://example.org/hello/Fabien #}

Traits

Silex\Application\UrlGeneratorTrait adds the following shortcuts:

	path: Generates a path.

	url: Generates an absolute URL.

$app->path('homepage');
$app->url('homepage');

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

ValidatorServiceProvider

The ValidatorServiceProvider provides a service for validating data. It is
most useful when used with the FormServiceProvider, but can also be used
standalone.

Parameters

none

Services

	validator: An instance of Validator [http://api.symfony.com/master/Symfony/Component/Validator/Validator.html].

	validator.mapping.class_metadata_factory: Factory for metadata loaders,
which can read validation constraint information from classes. Defaults to
StaticMethodLoader–ClassMetadataFactory.

This means you can define a static loadValidatorMetadata method on your
data class, which takes a ClassMetadata argument. Then you can set
constraints on this ClassMetadata instance.

	validator.validator_factory: Factory for ConstraintValidators. Defaults
to a standard ConstraintValidatorFactory. Mostly used internally by the
Validator.

Registering

$app->register(new Silex\Provider\ValidatorServiceProvider());

Note

The Symfony Validator Component comes with the “fat” Silex archive but not
with the regular one. If you are using Composer, add it as a dependency to
your composer.json file:

"require": {
 "symfony/validator": "2.1.*"
}

Usage

The Validator provider provides a validator service.

Validating Values

You can validate values directly using the validateValue validator
method:

use Symfony\Component\Validator\Constraints as Assert;

$app->get('/validate/{email}', function ($email) use ($app) {
 $errors = $app['validator']->validateValue($email, new Assert\Email());

 if (count($errors) > 0) {
 return (string) $errors;
 } else {
 return 'The email is valid';
 }
});

Validating Associative Arrays

Validating associative arrays is like validating simple values, with a
collection of constraints:

use Symfony\Component\Validator\Constraints as Assert;

class Book
{
 public $title;
 public $author;
}

class Author
{
 public $first_name;
 public $last_name;
}

$book = array(
 'title' => 'My Book',
 'author' => array(
 'first_name' => 'Fabien',
 'last_name' => 'Potencier',
),
);

$constraint = new Assert\Collection(array(
 'title' => new Assert\MinLength(10),
 'author' => new Assert\Collection(array(
 'first_name' => array(new Assert\NotBlank(), new Assert\MinLength(10)),
 'last_name' => new Assert\MinLength(10),
)),
));
$errors = $app['validator']->validateValue($book, $constraint);

if (count($errors) > 0) {
 foreach ($errors as $error) {
 echo $error->getPropertyPath().' '.$error->getMessage()."\n";
 }
} else {
 echo 'The book is valid';
}

Validating Objects

If you want to add validations to a class, you can define the constraint for
the class properties and getters, and then call the validate method:

use Symfony\Component\Validator\Constraints as Assert;

$author = new Author();
$author->first_name = 'Fabien';
$author->last_name = 'Potencier';

$book = new Book();
$book->title = 'My Book';
$book->author = $author;

$metadata = $app['validator.mapping.class_metadata_factory']->getClassMetadata('Author');
$metadata->addPropertyConstraint('first_name', new Assert\NotBlank());
$metadata->addPropertyConstraint('first_name', new Assert\MinLength(10));
$metadata->addPropertyConstraint('last_name', new Assert\MinLength(10));

$metadata = $app['validator.mapping.class_metadata_factory']->getClassMetadata('Book');
$metadata->addPropertyConstraint('title', new Assert\MinLength(10));
$metadata->addPropertyConstraint('author', new Assert\Valid());

$errors = $app['validator']->validate($book);

if (count($errors) > 0) {
 foreach ($errors as $error) {
 echo $error->getPropertyPath().' '.$error->getMessage()."\n";
 }
} else {
 echo 'The author is valid';
}

You can also declare the class constraint by adding a static
loadValidatorMetadata method to your classes:

use Symfony\Component\Validator\Mapping\ClassMetadata;
use Symfony\Component\Validator\Constraints as Assert;

class Book
{
 public $title;
 public $author;

 static public function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('title', new Assert\MinLength(10));
 $metadata->addPropertyConstraint('author', new Assert\Valid());
 }
}

class Author
{
 public $first_name;
 public $last_name;

 static public function loadValidatorMetadata(ClassMetadata $metadata)
 {
 $metadata->addPropertyConstraint('first_name', new Assert\NotBlank());
 $metadata->addPropertyConstraint('first_name', new Assert\MinLength(10));
 $metadata->addPropertyConstraint('last_name', new Assert\MinLength(10));
 }
}

$app->get('/validate/{email}', function ($email) use ($app) {
 $author = new Author();
 $author->first_name = 'Fabien';
 $author->last_name = 'Potencier';

 $book = new Book();
 $book->title = 'My Book';
 $book->author = $author;

 $errors = $app['validator']->validate($book);

 if (count($errors) > 0) {
 foreach ($errors as $error) {
 echo $error->getPropertyPath().' '.$error->getMessage()."\n";
 }
 } else {
 echo 'The author is valid';
 }
});

Note

Use addGetterConstraint() to add constraints on getter methods and
addConstraint() to add constraints on the class itself.

Translation

To be able to translate the error messages, you can use the translator
provider and register the messages under the validators domain:

$app['translator.domains'] = array(
 'validators' => array(
 'fr' => array(
 'This value should be a valid number.' => 'Cette valeur doit être un nombre.',
),
),
);

For more information, consult the Symfony2 Validation documentation [http://symfony.com/doc/2.0/book/validation.html].

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

FormServiceProvider

The FormServiceProvider provides a service for building forms in
your application with the Symfony2 Form component.

Parameters

	form.secret: This secret value is used for generating and validating the
CSRF token for a specific page. It is very important for you to set this
value to a static randomly generated value, to prevent hijacking of your
forms. Defaults to md5(__DIR__).

Services

	form.factory: An instance of FormFactory [http://api.symfony.com/master/Symfony/Component/Form/FormFactory.html],
that is used for build a form.

	form.csrf_provider: An instance of an implementation of the
CsrfProviderInterface [http://api.symfony.com/master/Symfony/Component/Form/Extension/Csrf/CsrfProvider/CsrfProviderInterface.html],
defaults to a DefaultCsrfProvider [http://api.symfony.com/master/Symfony/Component/Form/Extension/Csrf/CsrfProvider/DefaultCsrfProvider.html].

Registering

use Silex\Provider\FormServiceProvider;

$app->register(new FormServiceProvider());

Note

If you don’t want to create your own form layout, it’s fine: a default one
will be used. But you will have to register the
translation provider as the default form
layout requires it.

If you want to use validation with forms, do not forget to register the
Validator provider.

Note

The Symfony Form Component and all its dependencies (optional or not) comes
with the “fat” Silex archive but not with the regular one.

If you are using Composer, add it as a dependency to your
composer.json file:

"require": {
 "symfony/form": "2.1.*"
}

If you are going to use the validation extension with forms, you must also
add a dependency to the symfony/config and `symfony/translation
components:

"require": {
 "symfony/validator": "2.1.*",
 "symfony/config": "2.1.*",
 "symfony/translation": "2.1.*"
}

The Symfony Form Component relies on the PHP intl extension. If you don’t have
it, you can install the Symfony Locale Component as a replacement:

"require": {
 "symfony/locale": "2.1.*"
}

If you want to use forms in your Twig templates, make sure to install the
Symfony Twig Bridge:

"require": {
 "symfony/twig-bridge": "2.1.*"
}

Usage

The FormServiceProvider provides a form.factory service. Here is a usage
example:

$app->match('/form', function (Request $request) use ($app) {
 // some default data for when the form is displayed the first time
 $data = array(
 'name' => 'Your name',
 'email' => 'Your email',
);

 $form = $app['form.factory']->createBuilder('form', $data)
 ->add('name')
 ->add('email')
 ->add('gender', 'choice', array(
 'choices' => array(1 => 'male', 2 => 'female'),
 'expanded' => true,
))
 ->getForm();

 if ('POST' == $request->getMethod()) {
 $form->bind($request);

 if ($form->isValid()) {
 $data = $form->getData();

 // do something with the data

 // redirect somewhere
 return $app->redirect('...');
 }
 }

 // display the form
 return $app['twig']->render('index.twig', array('form' => $form->createView()));
});

And here is the index.twig form template (requires symfony/twig-
bridge):

<form action="#" method="post">
 {{ form_widget(form) }}

 <input type="submit" name="submit" />
</form>

If you are using the validator provider, you can also add validation to your
form by adding constraints on the fields:

use Symfony\Component\Validator\Constraints as Assert;

$app->register(new Silex\Provider\ValidatorServiceProvider());
$app->register(new Silex\Provider\TranslationServiceProvider(), array(
 'translator.messages' => array(),
));

$form = $app['form.factory']->createBuilder('form')
 ->add('name', 'text', array(
 'constraints' => array(new Assert\NotBlank(), new Assert\MinLength(5))
))
 ->add('email', 'text', array(
 'constraints' => new Assert\Email()
))
 ->add('gender', 'choice', array(
 'choices' => array(1 => 'male', 2 => 'female'),
 'expanded' => true,
 'constraints' => new Assert\Choice(array(1, 2)),
))
 ->getForm();

You can register form extensions by extending form.extensions:

$app['form.extensions'] = $app->share($app->extend('form.extensions', function ($extensions) use ($app) {
 $extensions[] = new YourTopFormExtension();

 return $extensions;
}));

Traits

Silex\Application\FormTrait adds the following shortcuts:

	form: Creates a FormBuilder instance.

$app->form($data);

For more information, consult the Symfony2 Forms documentation [http://symfony.com/doc/2.1/book/forms.html].

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

HttpCacheServiceProvider

The HttpCacheProvider provides support for the Symfony2 Reverse Proxy.

Parameters

	http_cache.cache_dir: The cache directory to store the HTTP cache data.

	http_cache.options (optional): An array of options for the HttpCache [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpCache/HttpCache.html]
constructor.

Services

	http_cache: An instance of HttpCache [http://api.symfony.com/master/Symfony/Component/HttpKernel/HttpCache/HttpCache.html].

Registering

$app->register(new Silex\Provider\HttpCacheServiceProvider(), array(
 'http_cache.cache_dir' => __DIR__.'/cache/',
));

Usage

Silex already supports any reverse proxy like Varnish out of the box by
setting Response HTTP cache headers:

use Symfony\Component\HttpFoundation\Response;

$app->get('/', function() {
 return new Response('Foo', 200, array(
 'Cache-Control' => 's-maxage=5',
));
});

Tip

If you want Silex to trust the X-Forwarded-For* headers from your
reverse proxy, you will need to run your application like this:

use Symfony\Component\HttpFoundation\Request;

Request::trustProxyData();
$app->run();

This provider allows you to use the Symfony2 reverse proxy natively with
Silex applications by using the http_cache service:

$app['http_cache']->run();

The provider also provides ESI support:

$app->get('/', function() {
 $response = new Response(<<<EOF
<html>
 <body>
 Hello
 <esi:include src="/included" />
 </body>
</html>

EOF
 , 200, array(
 'Surrogate-Control' => 'content="ESI/1.0"',
));

 $response->setTtl(20);

 return $response;
});

$app->get('/included', function() {
 $response = new Response('Foo');
 $response->setTtl(5);

 return $response;
});

$app['http_cache']->run();

Tip

To help you debug caching issues, set your application debug to true.
Symfony automatically adds a X-Symfony-Cache header to each response
with useful information about cache hits and misses.

If you are not using the Symfony Session provider, you might want to set
the PHP session.cache_limiter setting to an empty value to avoid the
default PHP behavior.

Finally, check that your Web server does not override your caching strategy.

For more information, consult the Symfony2 HTTP Cache documentation [http://symfony.com/doc/current/book/http_cache.html].

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

SecurityServiceProvider

The SecurityServiceProvider manages authentication and authorization for
your applications.

Parameters

n/a

Services

	security: The main entry point for the security provider. Use it to get
the current user token.

	security.authentication_manager: An instance of
AuthenticationProviderManager [http://api.symfony.com/master/Symfony/Component/Security/Core/Authentication/AuthenticationProviderManager.html],
responsible for authentication.

	security.access_manager: An instance of AccessDecisionManager [http://api.symfony.com/master/Symfony/Component/Security/Core/Authorization/AccessDecisionManager.html],
responsible for authorization.

	security.session_strategy: Define the session strategy used for
authentication (default to a migration strategy).

	security.user_checker: Checks user flags after authentication.

	security.last_error: Returns the last authentication errors when given a
Request object.

	security.encoder_factory: Defines the encoding strategies for user
passwords (default to use a digest algorithm for all users).

	security.encoder.digest: The encoder to use by default for all users.

Note

The service provider defines many other services that are used internally
but rarely need to be customized.

Registering

$app->register(new Silex\Provider\SecurityServiceProvider(array(
 'security.firewalls' => // see below
)));

Note

The Symfony Security Component comes with the “fat” Silex archive but not
with the regular one. If you are using Composer, add it as a dependency to
your composer.json file:

"require": {
 "symfony/security": "2.1.*"
}

Caution

The security features are only available after the Application has been
booted. So, if you want to use it outside of the handling of a request,
don’t forget to call boot() first:

$application->boot();

Usage

The Symfony Security component is powerful. To learn more about it, read the
Symfony2 Security documentation [http://symfony.com/doc/2.1/book/security.html].

Tip

When a security configuration does not behave as expected, enable logging
(with the Monolog extension for instance) as the Security Component logs a
lot of interesting information about what it does and why.

Below is a list of recipes that cover some common use cases.

Accessing the current User

The current user information is stored in a token that is accessible via the
security service:

$token = $app['security']->getToken();

If there is no information about the user, the token is null. If the user
is known, you can get it with a call to getUser():

if (null !== $token) {
 $user = $token->getUser();
}

The user can be a string, and object with a __toString() method, or an
instance of UserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html].

Securing a Path with HTTP Authentication

The following configuration uses HTTP basic authentication to secure URLs
under /admin/:

$app['security.firewalls'] = array(
 'admin' => array(
 'pattern' => '^/admin',
 'http' => true,
 'users' => array(
 // raw password is foo
 'admin' => array('ROLE_ADMIN', '5FZ2Z8QIkA7UTZ4BYkoC+GsReLf569mSKDsfods6LYQ8t+a8EW9oaircfMpmaLbPBh4FOBiiFyLfuZmTSUwzZg=='),
),
),
);

The pattern is a regular expression (it can also be a RequestMatcher [http://api.symfony.com/master/Symfony/Component/HttpFoundation/RequestMatcher.html]
instance); the http setting tells the security layer to use HTTP basic
authentication and the users entry defines valid users.

Each user is defined with the following information:

	The role or an array of roles for the user (roles are strings beginning with
ROLE_ and ending with anything you want);

	The user encoded password.

Caution

All users must at least have one role associated with them.

The default configuration of the extension enforces encoded passwords. To
generate a valid encoded password from a raw password, use the
security.encoder_factory service:

// find the encoder for a UserInterface instance
$encoder = $app['security.encoder_factory']->getEncoder($user);

// compute the encoded password for foo
$password = $encoder->encodePassword('foo', $user->getSalt());

When the user is authenticated, the user stored in the token is an instance of
User [http://api.symfony.com/master/Symfony/Component/Security/Core/User/User.html]

Securing a Path with a Form

Using a form to authenticate users is very similar to the above configuration.
Instead of using the http setting, use the form one and define these
two parameters:

	login_path: The login path where the user is redirected when he is
accessing a secured area without being authenticated so that he can enter
his credentials;

	check_path: The check URL used by Symfony to validate the credentials of
the user.

Here is how to secure all URLs under /admin/ with a form:

$app['security.firewalls'] = array(
 'admin' => array(
 'pattern' => '^/admin/',
 'form' => array('login_path' => '/login', 'check_path' => '/admin/login_check'),
 'users' => array(
 'admin' => array('ROLE_ADMIN', '5FZ2Z8QIkA7UTZ4BYkoC+GsReLf569mSKDsfods6LYQ8t+a8EW9oaircfMpmaLbPBh4FOBiiFyLfuZmTSUwzZg=='),
),
),
);

Always keep in mind the following two golden rules:

	The login_path path must always be defined outside the secured area
(or if it is in the secured area, the anonymous authentication mechanism
must be enabled – see below);

	The check_path path must always be defined inside the secured area.

For the login form to work, create a controller like the following:

use Symfony\Component\HttpFoundation\Request;

$app->get('/login', function(Request $request) use ($app) {
 return $app['twig']->render('login.html', array(
 'error' => $app['security.last_error']($request),
 'last_username' => $app['session']->get('_security.last_username'),
));
});

The error and last_username variables contain the last authentication
error and the last username entered by the user in case of an authentication
error.

Create the associated template:

<form action="{{ path('admin_login_check') }}" method="post">
 {{ error }}
 <input type="text" name="_username" value="{{ last_username }}" />
 <input type="password" name="_password" value="" />
 <input type="submit" />
</form>

Note

The admin_login_check route is automatically defined by Silex and its
name is derived from the check_path value (all / are replaced with
_ and the leading / is stripped).

Defining more than one Firewall

You are not limited to define one firewall per project.

Configuring several firewalls is useful when you want to secure different
parts of your website with different authentication strategies or for
different users (like using an HTTP basic authentication for the website API
and a form to secure your website administration area).

It’s also useful when you want to secure all URLs except the login form:

$app['security.firewalls'] = array(
 'login' => array(
 'pattern' => '^/login$',
),
 'secured' => array(
 'pattern' => '^.*$',
 'form' => array('login_path' => '/login', 'check_path' => '/login_check'),
 'users' => array(
 'admin' => array('ROLE_ADMIN', '5FZ2Z8QIkA7UTZ4BYkoC+GsReLf569mSKDsfods6LYQ8t+a8EW9oaircfMpmaLbPBh4FOBiiFyLfuZmTSUwzZg=='),
),
),
);

The order of the firewall configurations is significant as the first one to
match wins. The above configuration first ensures that the /login URL is
not secured (no authentication settings), and then it secures all other URLs.

Adding a Logout

When using a form for authentication, you can let users log out if you add the
logout setting, where logout_path must match the main firewall
pattern:

$app['security.firewalls'] = array(
 'secured' => array(
 'pattern' => '^/admin/',
 'form' => array('login_path' => '/login', 'check_path' => '/admin/login_check'),
 'logout' => array('logout_path' => '/admin/logout'),

 // ...
),
);

A route is automatically generated, based on the configured path (all /
are replaced with _ and the leading / is stripped):

Logout

Allowing Anonymous Users

When securing only some parts of your website, the user information are not
available in non-secured areas. To make the user accessible in such areas,
enabled the anonymous authentication mechanism:

$app['security.firewalls'] = array(
 'unsecured' => array(
 'anonymous' => true,

 // ...
),
);

When enabling the anonymous setting, a user will always be accessible from the
security context; if the user is not authenticated, it returns the anon.
string.

Checking User Roles

To check if a user is granted some role, use the isGranted() method on the
security context:

if ($app['security']->isGranted('ROLE_ADMIN') {
 // ...
}

You can check roles in Twig templates too:

{% if is_granted('ROLE_ADMIN') %}
 Switch to Fabien
{% endif %}

You can check if a user is “fully authenticated” (not an anonymous user for
instance) with the special IS_AUTHENTICATED_FULLY role:

{% if is_granted('IS_AUTHENTICATED_FULLY') %}
 Logout
{% else %}
 Login
{% endif %}

Of course you will need to define a login route for this to work.

Tip

Don’t use the getRoles() method to check user roles.

Caution

isGranted() throws an exception when no authentication information is
available (which is the case on non-secured area).

Impersonating a User

If you want to be able to switch to another user (without knowing the user
credentials), enable the switch_user authentication strategy:

$app['security.firewalls'] = array(
 'unsecured' => array(
 'switch_user' => array('parameter' => '_switch_user', 'role' => 'ROLE_ALLOWED_TO_SWITCH'),

 // ...
),
);

Switching to another user is now a matter of adding the _switch_user query
parameter to any URL when logged in as a user who has the
ROLE_ALLOWED_TO_SWITCH role:

{% if is_granted('ROLE_ALLOWED_TO_SWITCH') %}
 Switch to user Fabien
{% endif %}

You can check that you are impersonating a user by checking the special
ROLE_PREVIOUS_ADMIN. This is useful for instance to allow the user to
switch back to his primary account:

{% if is_granted('ROLE_PREVIOUS_ADMIN') %}
 You are an admin but you've switched to another user,
 exit the switch.
{% endif %}

Defining a Role Hierarchy

Defining a role hierarchy allows to automatically grant users some additional
roles:

$app['security.role_hierarchy'] = array(
 'ROLE_ADMIN' => array('ROLE_USER', 'ROLE_ALLOWED_TO_SWITCH'),
);

With this configuration, all users with the ROLE_ADMIN role also
automatically have the ROLE_USER and ROLE_ALLOWED_TO_SWITCH roles.

Defining Access Rules

Roles are a great way to adapt the behavior of your website depending on
groups of users, but they can also be used to further secure some areas by
defining access rules:

$app['security.access_rules'] = array(
 array('^/admin', 'ROLE_ADMIN', 'https'),
 array('^.*$', 'ROLE_USER'),
);

With the above configuration, users must have the ROLE_ADMIN to access the
/admin section of the website, and ROLE_USER for everything else.
Furthermore, the admin section can only be accessible via HTTPS (if that’s not
the case, the user will be automatically redirected).

Note

The first argument can also be a RequestMatcher [http://api.symfony.com/master/Symfony/Component/HttpFoundation/RequestMatcher.html]
instance.

Defining a custom User Provider

Using an array of users is simple and useful when securing an admin section of
a personal website, but you can override this default mechanism with you own.

The users setting can be defined as a service that returns an instance of
UserProviderInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserProviderInterface.html]:

'users' => $app->share(function () use ($app) {
 return new UserProvider($app['db']);
}),

Here is a simple example of a user provider, where Doctrine DBAL is used to
store the users:

use Symfony\Component\Security\Core\User\UserProviderInterface;
use Symfony\Component\Security\Core\User\UserInterface;
use Symfony\Component\Security\Core\User\User;
use Symfony\Component\Security\Core\Exception\UnsupportedUserException;
use Symfony\Component\Security\Core\Exception\UsernameNotFoundException;
use Doctrine\DBAL\Connection;

class UserProvider implements UserProviderInterface
{
 private $conn;

 public function __construct(Connection $conn)
 {
 $this->conn = $conn;
 }

 public function loadUserByUsername($username)
 {
 $stmt = $this->conn->executeQuery('SELECT * FROM users WHERE username = ?', array(strtolower($username)));

 if (!$user = $stmt->fetch()) {
 throw new UsernameNotFoundException(sprintf('Username "%s" does not exist.', $username));
 }

 return new User($user['username'], $user['password'], explode(',', $user['roles']), true, true, true, true);
 }

 public function refreshUser(UserInterface $user)
 {
 if (!$user instanceof User) {
 throw new UnsupportedUserException(sprintf('Instances of "%s" are not supported.', get_class($user)));
 }

 return $this->loadUserByUsername($user->getUsername());
 }

 public function supportsClass($class)
 {
 return $class === 'Symfony\Component\Security\Core\User\User';
 }
}

In this example, instances of the default User class are created for the
users, but you can define your own class; the only requirement is that the
class must implement UserInterface [http://api.symfony.com/master/Symfony/Component/Security/Core/User/UserInterface.html]

And here is the code that you can use to create the database schema and some
sample users:

use Doctrine\DBAL\Schema\Table;

$schema = $app['db']->getSchemaManager();
if (!$schema->tablesExist('users')) {
 $users = new Table('users');
 $users->addColumn('id', 'integer', array('unsigned' => true, 'autoincrement' => true));
 $users->setPrimaryKey(array('id'));
 $users->addColumn('username', 'string', array('length' => 32));
 $users->addUniqueIndex(array('username'));
 $users->addColumn('password', 'string', array('length' => 255));
 $users->addColumn('roles', 'string', array('length' => 255));

 $schema->createTable($users);

 $app['db']->executeQuery('INSERT INTO users (username, password, roles) VALUES ("fabien", "5FZ2Z8QIkA7UTZ4BYkoC+GsReLf569mSKDsfods6LYQ8t+a8EW9oaircfMpmaLbPBh4FOBiiFyLfuZmTSUwzZg==", "ROLE_USER")');
 $app['db']->executeQuery('INSERT INTO users (username, password, roles) VALUES ("admin", "5FZ2Z8QIkA7UTZ4BYkoC+GsReLf569mSKDsfods6LYQ8t+a8EW9oaircfMpmaLbPBh4FOBiiFyLfuZmTSUwzZg==", "ROLE_ADMIN")');
}

Tip

If you are using the Doctrine ORM, the Symfony bridge for Doctrine
provides a user provider class that is able to load users from your
entities.

Defining a custom Encoder

By default, Silex uses the sha512 algorithm to encode passwords.
Additionally, the password is encoded multiple times and converted to base64.
You can change these defaults by overriding the security.encoder.digest
service:

use Symfony\Component\Security\Core\Encoder\MessageDigestPasswordEncoder;

$app['security.encoder.digest'] = $app->share(function ($app) {
 // use the sha1 algorithm
 // don't base64 encode the password
 // use only 1 iteration
 return new MessageDigestPasswordEncoder('sha1', false, 1);
});

Defining a custom Authentication Provider

The Symfony Security component provides a lot of ready-to-use authentication
providers (form, HTTP, X509, remember me, ...), but you can add new ones
easily. To register a new authentication provider, create a service named
security.authentication_listener.factory.XXX where XXX is the name you want to
use in your configuration:

$app['security.authentication_listener.factory.wsse'] = $app->protect(function ($name, $options) use ($app) {
 // define the authentication provider object
 $app['security.authentication_provider.'.$name.'.wsse'] = $app->share(function () use ($app) {
 return new WsseProvider($app['security.user_provider.default'], __DIR__.'/security_cache');
 });

 // define the authentication listener object
 $app['security.authentication_listener.'.$name.'.wsse'] = $app->share(function () use ($app) {
 return new WsseListener($app['security'], $app['security.authentication_manager']);
 });

 return array(
 // the authentication provider id
 'security.authentication_provider.'.$name.'.wsse',
 // the authentication listener id
 'security.authentication_listener.'.$name.'.wsse',
 // the entry point id
 null,
 // the position of the listener in the stack
 'pre_auth'
);
});

You can now use it in your configuration like any other built-in
authentication provider:

$app->register(new Silex\Provider\SecurityServiceProvider(), array(
 'security.firewalls' => array(
 'default' => array(
 'wsse' => true,

 // ...
),
),
));

Instead of true, you can also define an array of options that customize
the behavior of your authentication factory; it will be passed as the second
argument of your authentication factory (see above).

This example uses the authentication provider classes as described in the
Symfony cookbook [http://symfony.com/doc/current/cookbook/security/custom_authentication_provider.html].

Traits

Silex\Application\SecurityTrait adds the following shortcuts:

	user: Returns the current user.

	encodePassword: Encode a given password.

$user = $app->user();

$encoded = $app->encodePassword($user, 'foo');

Silex\Route\SecurityTrait adds the following methods to the controllers:

	secure: Secures a controller for the given roles.

$app->get('/', function () {
 // do something but only for admins
})->secure('ROLE_ADMIN');

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

SerializerServiceProvider

The SerializerServiceProvider provides a service for serializing objects.

Parameters

None.

Services

	serializer: An instance of SymfonyComponentSerializerSerializer [http://api.symfony.com/master/Symfony/Component/Serializer/Serializer.html].

	serializer.encoders: SymfonyComponentSerializerEncoderJsonEncoder [http://api.symfony.com/master/Symfony/Component/Serializer/Encoder/JsonEncoder.html]
and SymfonyComponentSerializerEncoderXmlEncoder [http://api.symfony.com/master/Symfony/Component/Serializer/Encoder/XmlEncoder].

	serializer.normalizers: SymfonyComponentSerializerNormalizerCustomNormalizer [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/CustomNormalizer]
and SymfonyComponentSerializerNormalizerGetSetMethodNormalizer [http://api.symfony.com/master/Symfony/Component/Serializer/Normalizer/GetSetMethodNormalizer].

Registering

$app->register(new Silex\Provider\SerializerServiceProvider());

Usage

The SerializerServiceProvider provider provides a serializer service:

use Silex\Application;
use Silex\Provider\SerializerServiceProvider;
use Symfony\Component\HttpFoundation\Response;

$app = new Application();

$app->register(new SerializerServiceProvider());

// only accept content types supported by the serializer via the assert method.
$app->get("/pages/{id}.{_format}", function ($id) use ($app) {
 // assume a page_repository service exists that returns Page objects. The
 // object returned has getters and setters exposing the state.
 $page = $app['page_repository']->find($id);
 $format = $app['request']->getRequestFormat();

 if (!$page instanceof Page) {
 $app->abort("No page found for id: $id");
 }

 return new Response($app['serializer']->serialize($page, $format), 200, array(
 "Content-Type" => $app['request']->getMimeType($format)
));
})->assert("_format", "xml|json")
 ->assert("id", "\d+");

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

 	Silex

ServiceControllerServiceProvider

As your Silex application grows, you may wish to begin organizing your
controllers in a more formal fashion. Silex can use controller classes out of
the box, but with a bit of work, your controllers can be created as services,
giving you the full power of dependency injection and lazy loading.

Why would I want to do this?

	Dependency Injection over Service Location

Using this method, you can inject the actual dependencies required by your
controller and gain total inversion of control, while still maintaining the
lazy loading of your controllers and it’s dependencies. Because your
dependencies are clearly defined, they are easily mocked, allowing you to test
your controllers in isolation.

	Framework Independence

Using this method, your controllers start to become more independent of the
framework you are using. Carefully crafted, your controllers will become
reusable with multiple frameworks. By keeping careful control of your
dependencies, your controllers could easily become compatible with Silex,
Symfony (full stack) and Drupal, to name just a few.

Parameters

There are currently no parameters for the ServiceControllerServiceProvider.

Services

There are no extra services provided, the ServiceControllerServiceProvider
simply extends the existing resolver service.

Registering

$app->register(new Silex\Provider\ServiceControllerServiceProvider());

Usage

In this slightly contrived example of a blog API, we’re going to change the
/posts.json route to use a controller, that is defined as a service.

use Silex\Application;
use Demo\Repository\PostRepository;

$app = new Application();

$app['posts.repository'] = $app->share(function() {
 return new PostRepository;
});

$app->get('/posts.json', function() use ($app) {
 return $app->json($app['posts.repository']->findAll());
});

Rewriting your controller as a service is pretty simple, create a Plain Ol’ PHP
Object with your PostRepository as a dependency, along with an
indexJsonAction method to handle the request. Although not shown in the
example below, you can use type hinting and parameter naming to get the
parameters you need, just like with standard Silex routes.

If you are a TDD/BDD fan (and you should be), you may notice that this
controller has well defined responsibilities and dependencies, and is easily
tested/specced. You may also notice that the only external dependency is on
Symfony\Component\HttpFoundation\JsonResponse, meaning this controller could
easily be used in a Symfony (full stack) application, or potentially with other
applications or frameworks that know how to handle a Symfony/HttpFoundation [http://symfony.com/doc/2.0/components/http_foundation/introduction.html]
Response object.

namespace Demo\Controller;

use Demo\Repository\PostRepository;
use Symfony\Component\HttpFoundation\JsonResponse;

class PostController
{
 protected $repo;

 public function __construct(PostRepository $repo)
 {
 $this->repo = $repo;
 }

 public function indexJsonAction()
 {
 return new JsonResponse($this->repo->findAll());
 }
}

And lastly, define your controller as a service in the application, along with
your route. The syntax in the route definition is the name of the service,
followed by a single colon (:), followed by the method name.

$app['posts.controller'] = $app->share(function() use ($app) {
 return new PostController($app['posts.repository']);
});

$app->get('/posts.json', "posts.controller:indexJsonAction");

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Webserver Configuration

Apache

If you are using Apache you can use a .htaccess file for this:

<IfModule mod_rewrite.c>
 Options -MultiViews

 RewriteEngine On
 #RewriteBase /path/to/app
 RewriteCond %{REQUEST_FILENAME} !-f
 RewriteRule ^ index.php [L]
</IfModule>

Note

If your site is not at the webroot level you will have to uncomment the
RewriteBase statement and adjust the path to point to your directory,
relative from the webroot.

Alternatively, if you use Apache 2.2.16 or higher, you can use the
FallbackResource directive [http://www.adayinthelifeof.nl/2012/01/21/apaches-fallbackresource-your-new-htaccess-command/] so make your .htaccess even easier:

FallbackResource /index.php

Note

If your site is not at the webroot level you will have to adjust the path to
point to your directory, relative from the webroot.

nginx

If you are using nginx, configure your vhost to forward non-existent
resources to index.php:

server {
 #site root is redirected to the app boot script
 location = / {
 try_files @site @site;
 }

 #all other locations try other files first and go to our front controller if none of them exists
 location / {
 try_files $uri $uri/ @site;
 }

 #return 404 for all php files as we do have a front controller
 location ~ \.php$ {
 return 404;
 }

 location @site {
 fastcgi_pass unix:/var/run/php-fpm/www.sock;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME $document_root/index.php;
 #uncomment when running via https
 #fastcgi_param HTTPS on;
 }
}

IIS

If you are using the Internet Information Services from Windows, you can use
this sample web.config file:

<?xml version="1.0"?>
<configuration>
 <system.webServer>
 <defaultDocument>
 <files>
 <clear />
 <add value="index.php" />
 </files>
 </defaultDocument>
 <rewrite>
 <rules>
 <rule name="Silex Front Controller" stopProcessing="true">
 <match url="^(.*)$" ignoreCase="false" />
 <conditions logicalGrouping="MatchAll">
 <add input="{REQUEST_FILENAME}" matchType="IsFile" ignoreCase="false" negate="true" />
 </conditions>
 <action type="Rewrite" url="index.php" appendQueryString="true" />
 </rule>
 </rules>
 </rewrite>
 </system.webServer>
</configuration>

Lighttpd

If you are using lighttpd, use this sample simple-vhost as a starting
point:

server.document-root = "/path/to/app"

url.rewrite-once = (
 # configure some static files
 "^/assets/.+" => "$0",
 "^/favicon\.ico$" => "$0",

 "^(/[^\?]*)(\?.*)?" => "/index.php$1$2"
)

PHP 5.4

PHP 5.4 ships with a built-in webserver for development. This server allows
you to run silex without any configuration. However, in order to serve static
files, you’ll have to make sure your front controller returns false in that
case:

// web/index.php

$filename = __DIR__.preg_replace('#(\?.*)$#', '', $_SERVER['REQUEST_URI']);
if (php_sapi_name() === 'cli-server' && is_file($filename)) {
 return false;
}

$app = require __DIR__.'/../src/app.php';
$app->run();

Assuming your front controller is at web/index.php, you can start the
server from the command-line with this command:

$ php -S localhost:8080 -t web web/index.php

Now the application should be running at http://localhost:8080.

Note

This server is for development only. It is not recommended to use it
in production.

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Silex 0.0.0 documentation

Changelog

	2012-11-05: Filters have been renamed to application middlewares in the
documentation.

	2012-11-05: The before(), after(), error(), and finish()
listener priorities now set the priority of the underlying Symfony event
instead of a custom one before.

	2012-11-05: Removing the default exception handler should now be done
via its disable() method:

Before:

unset($app[‘exception_handler’]);

After:

$app[‘exception_handler’]->disable();

	2012-07-15: removed the monolog.configure service. Use the
extend method instead:

Before:

$app['monolog.configure'] = $app->protect(function ($monolog) use ($app) {
 // do something
});

After:

$app['monolog'] = $app->share($app->extend('monolog', function($monolog, $app) {
 // do something

 return $monolog;
}));

	2012-06-17: ControllerCollection now takes a required route instance
as a constructor argument.

Before:

$controllers = new ControllerCollection();

After:

$controllers = new ControllerCollection(new Route());

// or even better
$controllers = $app['controllers_factory'];

	2012-06-17: added application traits for PHP 5.4

	2012-06-16: renamed request.default_locale to locale

	2012-06-16: Removed the translator.loader service. See documentation
for how to use XLIFF or YAML-based translation files.

	2012-06-15: removed the twig.configure service. Use the extend
method instead:

Before:

$app['twig.configure'] = $app->protect(function ($twig) use ($app) {
 // do something
});

After:

$app['twig'] = $app->share($app->extend('twig', function($twig, $app) {
 // do something

 return $twig;
}));

	2012-06-13: Added a route before middleware

	2012-06-13: Renamed the route middleware to before

	2012-06-13: Added an extension for the Symfony Security component

	2012-05-31: Made the BrowserKit, CssSelector, DomCrawler,
Finder and Process components optional dependencies. Projects that
depend on them (e.g. through functional tests) should add those dependencies
to their composer.json.

	2012-05-26: added boot() to ServiceProviderInterface.

	2012-05-26: Removed SymfonyBridgesServiceProvider. It is now implicit
by checking the existence of the bridge.

	2012-05-26: Removed the translator.messages parameter (use
translator.domains instead).

	2012-05-24: Removed the autoloader service (use composer instead).
The *.class_path settings on all the built-in providers have also been
removed in favor of Composer.

	2012-05-21: Changed error() to allow handling specific exceptions.

	2012-05-20: Added a way to define settings on a controller collection.

	2012-05-20: The Request instance is not available anymore from the
Application after it has been handled.

	2012-04-01: Added finish filters.

	2012-03-20: Added json helper:

$data = array('some' => 'data');
$response = $app->json($data);

	2012-03-11: Added route middlewares.

	2012-03-02: Switched to use Composer for dependency management.

	2012-02-27: Updated to Symfony 2.1 session handling.

	2012-01-02: Introduced support for streaming responses.

	2011-09-22: ExtensionInterface has been renamed to
ServiceProviderInterface. All built-in extensions have been renamed
accordingly (for instance, Silex\Extension\TwigExtension has been
renamed to Silex\Provider\TwigServiceProvider).

	2011-09-22: The way reusable applications work has changed. The
mount() method now takes an instance of ControllerCollection instead
of an Application one.

Before:

$app = new Application();
$app->get('/bar', function() { return 'foo'; });

return $app;

After:

$app = new ControllerCollection();
$app->get('/bar', function() { return 'foo'; });

return $app;

	2011-08-08: The controller method configuration is now done on the Controller itself

Before:

$app->match('/', function () { echo 'foo'; }, 'GET|POST');

After:

$app->match('/', function () { echo 'foo'; })->method('GET|POST');

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	Silex 0.0.0 documentation

Phar File

Caution

Using the Silex phar file is deprecated. You should use Composer
instead to install Silex and its dependencies or download one of the
archives.

Installing

Installing Silex is as easy as downloading the phar [http://silex.sensiolabs.org/get/silex.phar] and storing it somewhere on
the disk. Then, require it in your script:

<?php

require_once __DIR__.'/silex.phar';

$app = new Silex\Application();

$app->get('/hello/{name}', function ($name) use ($app) {
 return 'Hello '.$app->escape($name);
});

$app->run();

Console

Silex includes a lightweight console for updating to the latest version.

To find out which version of Silex you are using, invoke silex.phar on the
command-line with version as an argument:

$ php silex.phar version
Silex version 0a243d3 2011-04-17 14:49:31 +0200

To check that your are using the latest version, run the check command:

$ php silex.phar check

To update silex.phar to the latest version, invoke the update
command:

$ php silex.phar update

This will automatically download a new silex.phar from
silex.sensiolabs.org and replace the existing one.

Pitfalls

There are some things that can go wrong. Here we will try and outline the
most frequent ones.

PHP configuration

Certain PHP distributions have restrictive default Phar settings. Setting
the following may help.

detect_unicode = Off
phar.readonly = Off
phar.require_hash = Off

If you are on Suhosin you will also have to set this:

suhosin.executor.include.whitelist = phar

Note

Ubuntu’s PHP ships with Suhosin, so if you are using Ubuntu, you will need
this change.

Phar-Stub bug

Some PHP installations have a bug that throws a PharException when trying
to include the Phar. It will also tell you that Silex\Application could not
be found. A workaround is using the following include line:

require_once 'phar://'.__DIR__.'/silex.phar/autoload.php';

The exact cause of this issue could not be determined yet.

ioncube loader bug

Ioncube loader is an extension that can decode PHP encoded file.
Unfortunately, old versions (prior to version 4.0.9) are not working well
with phar archives.
You must either upgrade Ioncube loader to version 4.0.9 or newer or disable it
by commenting or removing this line in your php.ini file:

zend_extension = /usr/lib/php5/20090626+lfs/ioncube_loader_lin_5.3.so

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	Silex 0.0.0 documentation

Index

 Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 _static/minus.png

cookbook/form_no_csrf.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Silex 0.0.0 documentation »

 		Cookbook »

Disable CSRF Protection on a form using the FormExtension

The FormExtension provides a service for building form in your application
with the Symfony2 Form component. By default, the FormExtension uses the
CSRF Protection avoiding Cross-site request forgery, a method by which a
malicious user attempts to make your legitimate users unknowingly submit data
that they don’t intend to submit.

You can find more details about CSRF Protection and CSRF token in the
Symfony2 Book [http://symfony.com/doc/current/book/forms.html#csrf-protection].

In some cases (for example, when embedding a form in an html email) you might
want not to use this protection. The easiest way to avoid this is to
understand that it is possible to give specific options to your form builder
through the createBuilder() function.

Example

$form = $app['form.factory']->createBuilder('form', null, array('csrf_protection' => false));

That’s it, your form could be submitted from everywhere without CSRF Protection.

Going further

This specific example showed how to change the csrf_protection in the
$options parameter of the createBuilder() function. More of them could
be passed through this parameter, it is as simple as using the Symfony2
getDefaultOptions() method in your form classes. See more here [http://symfony.com/doc/current/book/forms.html#book-form-creating-form-classes].

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

search.html

 Navigation

 		
 index

 		Silex 0.0.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down.png

_static/comment.png

_static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

cookbook/error_handler.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Silex 0.0.0 documentation »

 		Cookbook »

How to convert errors to exceptions

Silex will catch exceptions that are thrown from within a request/response
cycle. It will however not catch PHP errors and notices. You can catch them
by converting them to exceptions, this recipe will tell you how.

Why does Silex not do this?

Silex could do this automatically in theory, but there is a reason why it does
not. Silex acts as a library, this means that it does not mess with any global
state. Since error handlers are global in PHP, it is your responsibility as a
user to register them.

Registering the ErrorHandler

Fortunately, Silex ships with an ErrorHandler (it’s part of the
HttpKernel package) that solves this issue. It converts all errors to
exceptions, and exceptions can be caught by Silex.

You register it by calling the static register method:

use Symfony\Component\HttpKernel\Debug\ErrorHandler;

ErrorHandler::register();

It is recommended that you do this in your front controller, i.e.
web/index.php.

Note

The ErrorHandler has nothing to do with the ExceptionHandler. The
ExceptionHandler is responsible for displaying caught exceptions
nicely.

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

_static/comment-bright.png

cookbook/session_storage.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Silex 0.0.0 documentation »

 		Cookbook »

How to use PdoSessionStorage to store sessions in the database

By default, the SessionServiceProvider writes
session information in files using Symfony2 NativeFileSessionStorage. Most
medium to large websites use a database to store sessions instead of files,
because databases are easier to use and scale in a multi-webserver
environment.

Symfony2’s NativeSessionStorage [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/NativeSessionStorage.html]
has multiple storage handlers and one of them uses PDO to store sessions,
PdoSessionHandler [http://api.symfony.com/master/Symfony/Component/HttpFoundation/Session/Storage/Handler/PdoSessionHandler.html].
To use it, replace the session.storage.handler service in your application
like explained below.

With a dedicated PDO service

use Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler;

$app->register(new Silex\Provider\SessionServiceProvider());

$app['pdo.dsn'] = 'mysql:dbname=mydatabase';
$app['pdo.user'] = 'myuser';
$app['pdo.password'] = 'mypassword';

$app['session.db_options'] = array(
 'db_table' => 'session',
 'db_id_col' => 'session_id',
 'db_data_col' => 'session_value',
 'db_time_col' => 'session_time',
);

$app['pdo'] = $app->share(function () use ($app) {
 return new PDO(
 $app['pdo.dsn'],
 $app['pdo.user'],
 $app['pdo.password']
);
});

$app['session.storage.handler'] = $app->share(function () use ($app) {
 return new PdoSessionHandler(
 $app['pdo'],
 $app['session.db_options'],
 $app['session.storage.options']
);
});

Using the DoctrineServiceProvider

When using the DoctrineServiceProvider You don’t
have to make another database connection, simply pass the getWrappedConnection method.

use Symfony\Component\HttpFoundation\Session\Storage\Handler\PdoSessionHandler;

$app->register(new Silex\Provider\SessionServiceProvider());

$app['session.db_options'] = array(
 'db_table' => 'session',
 'db_id_col' => 'session_id',
 'db_data_col' => 'session_value',
 'db_time_col' => 'session_time',
);

$app['session.storage.handler'] = $app->share(function () use ($app) {
 return new PdoSessionHandler(
 $app['db']->getWrappedConnection(),
 $app['session.db_options'],
 $app['session.storage.options']
);
});

Database structure

PdoSessionStorage needs a database table with 3 columns:

		session_id: ID column (VARCHAR(255) or larger)

		session_value: Value column (TEXT or CLOB)

		session_time: Time column (INTEGER)

You can find examples of SQL statements to create the session table in the
Symfony2 cookbook [http://symfony.com/doc/current/cookbook/configuration/pdo_session_storage.html#example-sql-statements]

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

modularity.html

 Navigation

 		
 index

 		Silex 0.0.0 documentation »

Modularity

When your application starts to define too many controllers, you might want to
group them logically:

// define controllers for a blog
$blog = $app['controllers_factory'];
$blog->get('/', function () {
 return 'Blog home page';
});
// ...

// define controllers for a forum
$forum = $app['controllers_factory'];
$forum->get('/', function () {
 return 'Forum home page';
});

// define "global" controllers
$app->get('/', function () {
 return 'Main home page';
});

$app->mount('/blog', $blog);
$app->mount('/forum', $forum);

Note

$app['controllers_factory'] is a factory that returns a new instance
of ControllerCollection when used.

mount() prefixes all routes with the given prefix and merges them into the
main Application. So, / will map to the main home page, /blog/ to the
blog home page, and /forum/ to the forum home page.

Caution

When mounting a route collection under /blog, it is not possible to
define a route for the /blog URL. The shortest possible URL is
/blog/.

Note

When calling get(), match(), or any other HTTP methods on the
Application, you are in fact calling them on a default instance of
ControllerCollection (stored in $app['controllers']).

Another benefit is the ability to apply settings on a set of controllers very
easily. Building on the example from the middleware section, here is how you
would secure all controllers for the backend collection:

$backend = $app['controllers_factory'];

// ensure that all controllers require logged-in users
$backend->before($mustBeLogged);

Tip

For a better readability, you can split each controller collection into a
separate file:

// blog.php
$blog = $app['controllers_factory'];
$blog->get('/', function () { return 'Blog home page'; });

return $blog;

// app.php
$app->mount('/blog', include 'blog.php');

Instead of requiring a file, you can also create a Controller
provider.

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

_static/up.png

cookbook/sub_requests.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Silex 0.0.0 documentation »

 		Cookbook »

How to make sub-requests

Since Silex is based on the HttpKernelInterface, it allows you to simulate
requests against your application. This means that you can embed a page within
another, it also allows you to forward a request which is essentially an
internal redirect that does not change the URL.

Basics

You can make a sub-request by calling the handle method on the
Application. This method takes three arguments:

		
		$request: An instance of the Request class which represents the

		HTTP request.

		$type: Must be either HttpKernelInterface::MASTER_REQUEST or
HttpKernelInterface::SUB_REQUEST. Certain listeners are only executed for
the master request, so it’s important that this is set to SUB_REQUEST.

		$catch: Catches exceptions and turns them into a response with status code
500. This argument defaults to true. For sub-requests you will most
likely want to set it to false.

By calling handle, you can make a sub-request manually. Here’s an example:

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\HttpKernelInterface;

$subRequest = Request::create('/');
$response = $app->handle($subRequest, HttpKernelInterface::SUB_REQUEST, false);

There’s some more things that you need to keep in mind though. In most cases
you will want to forward some parts of the current master request to the sub-
request. That includes: Cookies, server information, session.

Here is a more advanced example that forwards said information ($request
holds the master request):

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\HttpKernelInterface;

$subRequest = Request::create('/', 'GET', array(), $request->cookies->all(), array(), $request->server->all());
if ($request->getSession()) {
 $subRequest->setSession($request->getSession());
}

$response = $app->handle($subRequest, HttpKernelInterface::SUB_REQUEST, false);

To forward this response to the client, you can simply return it from a
controller:

use Silex\Application;
use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpKernel\HttpKernelInterface;

$app->get('/foo', function (Application $app, Request $request) {
 $subRequest = Request::create('/', ...);
 $response = $app->handle($subRequest, HttpKernelInterface::SUB_REQUEST, false);

 return $response;
});

If you want to embed the response as part of a larger page you can call
Response::getContent:

$header = ...;
$footer = ...;
$body = $response->getContent();

return $header.$body.$footer;

Rendering pages in Twig templates

The TwigServiceProvider provides a render
function that you can use in Twig templates. It gives you a convenient way to
embed pages.

{{ render('/sidebar') }}

For details, refer to the TwigServiceProvider docs.

Edge Side Includes

You can use ESI either through the HttpCacheServiceProvider or a reverse proxy cache such as Varnish. This also
allows you to embed pages, however it also gives you the benefit of caching
parts of the page.

Here is an example of how you would embed a page via ESI:

<esi:include src="/sidebar" />

For details, refer to the HttpCacheServiceProvider docs.

Dealing with the request base URL

One thing to watch out for is the base URL. If your application is not
hosted at the webroot of your web server, then you may have an URL like
http://example.org/foo/index.php/articles/42.

In this case, /foo/index.php is your request base path. Silex accounts for
this path prefix in the routing process, it reads it from
$request->server. In the context of sub-requests this can lead to issues,
because if you do not prepend the base path the request could mistake a part
of the path you want to match as the base path and cut it off.

You can prevent that from happening by always prepending the base path when
constructing a request:

$url = $request->getUriForPath('/');
$subRequest = Request::create($url, 'GET', array(), $request->cookies->all(), array(), $request->server->all());

This is something to be aware of when making sub-requests by hand.

Lack of container scopes

While the sub-requests available in Silex are quite powerful, they have their
limits. The major limitation/danger that you will run into is the lack of
scopes on the Pimple container.

The container is a concept that is global to a Silex application, since the
application object is the container. Any request that is run against an
application will re-use the same set of services. Since these services are
mutable, code in a master request can affect the sub-requests and vice versa.
Any services depending on the request service will store the first request
that they get (could be master or sub-request), and keep using it, even if
that request is already over.

For example:

use Symfony\Component\HttpFoundation\Request;

class ContentFormatNegotiator
{
 private $request;

 public function __construct(Request $request)
 {
 $this->request = $request;
 }

 public function negotiateFormat(array $serverTypes)
 {
 $clientAcceptType = $this->request->headers->get('Accept');

 ...

 return $format;
 }
}

This example looks harmless, but it might blow up. You have no way of knowing
what $request->headers->get() will return, because $request could be
either the master request or a sub-request. The answer in this case is to pass
the request as an argument to negotiateFormat. Then you can pass it in
from a location where you have safe access to the current request: a listener
or a controller.

Here are a few general approaches to working around this issue:

		Use ESI with Varnish.

		Do not inject the request, ever. Use listeners instead, as they can access
the request without storing it.

		Inject the Silex Application and fetch the request from it.

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

_static/plus.png

cookbook/translating_validation_messages.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Silex 0.0.0 documentation »

 		Cookbook »

Translating Validation Messages

When working with Symfony2 validator, a common task would be to show localized
validation messages.

In order to do that, you will need to register translator and point to
translated resources:

$app->register(new Silex\Provider\TranslationServiceProvider(), array(
 'locale' => 'sr_Latn',
 'translator.domains' => array(),
));

$app->before(function () use ($app) {
 $app['translator']->addLoader('xlf', new Symfony\Component\Translation\Loader\XliffFileLoader());
 $app['translator']->addResource('xlf', __DIR__.'/vendor/symfony/src/Symfony/Bundle/FrameworkBundle/Resources/translations/validators.sr_Latn.xlf', 'sr_Latn', 'validators');
});

And that’s all you need to load translations from Symfony2 xlf files.

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

cookbook/validator_yaml.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Silex 0.0.0 documentation »

 		Cookbook »

How to use YAML to configure validation

Simplicity is at the heart of Silex so there is no out of the box solution to
use YAML files for validation. But this doesn’t mean that this is not
possible. Let’s see how to do it.

First, you need to install the YAML Component. Declare it as a dependency in
your composer.json file:

"require": {
 "symfony/yaml": "2.1.*"
}

Next, you need to tell the Validation Service that you are not using
StaticMethodLoader to load your class metadata but a YAML file:

$app->register(new ValidatorServiceProvider());

$app['validator.mapping.class_metadata_factory'] = new Symfony\Component\Validator\Mapping\ClassMetadataFactory(
 new Symfony\Component\Validator\Mapping\Loader\YamlFileLoader(__DIR__.'/validation.yml')
);

Now, we can replace the usage of the static method and move all the validation
rules to validation.yml:

validation.yml
Post:
 properties:
 title:
 - NotNull: ~
 - NotBlank: ~
 body:
 - Min: 100

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

cookbook/json_request_body.html

 Navigation

 		
 index

 		
 next |

 		
 previous |

 		Silex 0.0.0 documentation »

 		Cookbook »

Accepting a JSON request body

A common need when building a restful API is the ability to accept a JSON
encoded entity from the request body.

An example for such an API could be a blog post creation.

Example API

In this example we will create an API for creating a blog post. The following
is a spec of how we want it to work.

Request

In the request we send the data for the blog post as a JSON object. We also
indicate that using the Content-Type header:

POST /blog/posts
Accept: application/json
Content-Type: application/json
Content-Length: 57

{"title":"Hello World!","body":"This is my first post!"}

Response

The server responds with a 201 status code, telling us that the post was
created. It tells us the Content-Type of the response, which is also
JSON:

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 65
Connection: close

{"id":"1","title":"Hello World!","body":"This is my first post!"}

Parsing the request body

The request body should only be parsed as JSON if the Content-Type header
begins with application/json. Since we want to do this for every request,
the easiest solution is to use an application before middleware.

We simply use json_decode to parse the content of the request and then
replace the request data on the $request object:

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\ParameterBag;

$app->before(function (Request $request) {
 if (0 === strpos($request->headers->get('Content-Type'), 'application/json')) {
 $data = json_decode($request->getContent(), true);
 $request->request->replace(is_array($data) ? $data : array());
 }
});

Controller implementation

Our controller will create a new blog post from the data provided and will
return the post object, including its id, as JSON:

use Symfony\Component\HttpFoundation\Request;
use Symfony\Component\HttpFoundation\Response;

$app->post('/blog/posts', function (Request $request) use ($app) {
 $post = array(
 'title' => $request->request->get('title'),
 'body' => $request->request->get('body'),
);

 $post['id'] = createPost($post);

 return $app->json($post, 201);
});

Manual testing

In order to manually test our API, we can use the curl command line
utility, which allows sending HTTP requests:

$ curl http://blog.lo/blog/posts -d '{"title":"Hello World!","body":"This is my first post!"}' -H 'Content-Type: application/json'
{"id":"1","title":"Hello World!","body":"This is my first post!"}

 © Copyright 2010 Fabien Potencier.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

